Comparación de modelos de Machine Learning para determinar qué modelo se aproxima más a una asignación manual en ServiceDesk

Descripción del Articulo

Realiza una comparación de algoritmos de aprendizaje automático para categorizar automáticamente los tickets del ServiceDesk debido al enorme número generado. Esto se debe a un problema con el tiempo necesario para generar tickets (solicitudes, incidentes y requerimientos). Mediante la utilización d...

Descripción completa

Detalles Bibliográficos
Autor: Paullo Montes, Flor de Milagro
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/21853
Enlace del recurso:https://hdl.handle.net/20.500.12672/21853
Nivel de acceso:acceso abierto
Materia:Algoritmos
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:Realiza una comparación de algoritmos de aprendizaje automático para categorizar automáticamente los tickets del ServiceDesk debido al enorme número generado. Esto se debe a un problema con el tiempo necesario para generar tickets (solicitudes, incidentes y requerimientos). Mediante la utilización de tecnologías de aprendizaje automático que permiten la asignación automatizada de grupos de soluciones de proveedores que atienden a empresas de alto consumo, el modelo sugerido pretende mejorar el procedimiento de designación de tickets del ServiceDesk. Para la verificación se utilizaron los datos de los tickets de la empresa y se realizaron pruebas para validar el modelo. Los datos recopilados se utilizaron para construir un modelo de aprendizaje automático que proporcionó los datos necesarios para clasificar los tickets en varios grupos de soluciones (SupportMG, SupportDevmente, SupportTI y ProjectsTI) y categorizarlos en función del tipo.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).