Expansión de Laurent y continuación holomorfa en Cn

Descripción del Articulo

Aborda las series de Taylor y expansión de Laurent en Cn y la continuación holomorfa en Cn. En el primer capítulo, se demuestra las ecuaciones diferenciales de Cauchy-Riemann y las derivadas de Wirtinger en Cn, la fórmula integral de Cauchy en Cn y los teorema de Arzelà- Ascoli y Montel; además, se...

Descripción completa

Detalles Bibliográficos
Autor: Espinoza Garate, Franco Terry
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/20787
Enlace del recurso:https://hdl.handle.net/20.500.12672/20787
Nivel de acceso:acceso abierto
Materia:Funciones (Matemáticas)
Matemáticas aplicadas
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Aborda las series de Taylor y expansión de Laurent en Cn y la continuación holomorfa en Cn. En el primer capítulo, se demuestra las ecuaciones diferenciales de Cauchy-Riemann y las derivadas de Wirtinger en Cn, la fórmula integral de Cauchy en Cn y los teorema de Arzelà- Ascoli y Montel; además, se demuestra la expansión de Taylor y la expansión de Laurent en Cn. En el segundo capítulo, se define los dominios policirculares, se demuestra el teorema de continuación holomorfa sobre dominios de Reinhardt, se da una interpretación-representación teórica de las series de Laurent y se demuestra el teorema de Hartogs’ Kugelsatz, caso especial.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).