Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
Descripción del Articulo
Propone identificar el tamaño en base a cinco variables los ingresos, egresos, activos, pasivos y patrimonio usando información recogida por el Instituto Nacional de Estadística e Informática en la Encuesta Económica Anual ejecutada en el años 2018, donde las empresas registran información del ejerc...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/18631 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/18631 |
Nivel de acceso: | acceso abierto |
Materia: | Algoritmos - Problemas, ejercicios, etc. Clusters industriales https://purl.org/pe-repo/ocde/ford#1.01.02 https://purl.org/pe-repo/ocde/ford#1.01.03 |
id |
UNMS_3d5b57e388c00a9e2129fe944214353a |
---|---|
oai_identifier_str |
oai:cybertesis.unmsm.edu.pe:20.500.12672/18631 |
network_acronym_str |
UNMS |
network_name_str |
UNMSM-Tesis |
repository_id_str |
410 |
dc.title.es_PE.fl_str_mv |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
title |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
spellingShingle |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means Espinoza Ballesteros, Moisés Algoritmos - Problemas, ejercicios, etc. Clusters industriales https://purl.org/pe-repo/ocde/ford#1.01.02 https://purl.org/pe-repo/ocde/ford#1.01.03 |
title_short |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
title_full |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
title_fullStr |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
title_full_unstemmed |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
title_sort |
Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means |
author |
Espinoza Ballesteros, Moisés |
author_facet |
Espinoza Ballesteros, Moisés |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Roque Paredes, Ofelia |
dc.contributor.author.fl_str_mv |
Espinoza Ballesteros, Moisés |
dc.subject.es_PE.fl_str_mv |
Algoritmos - Problemas, ejercicios, etc. Clusters industriales |
topic |
Algoritmos - Problemas, ejercicios, etc. Clusters industriales https://purl.org/pe-repo/ocde/ford#1.01.02 https://purl.org/pe-repo/ocde/ford#1.01.03 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.02 https://purl.org/pe-repo/ocde/ford#1.01.03 |
description |
Propone identificar el tamaño en base a cinco variables los ingresos, egresos, activos, pasivos y patrimonio usando información recogida por el Instituto Nacional de Estadística e Informática en la Encuesta Económica Anual ejecutada en el años 2018, donde las empresas registran información del ejercicio económico del año 2017. Con esta premisa estamos ante un problema de segmentación o clustering, en toda problemática se tiene diversas maneras de abordarlo y encontrar una solución adecuada, por ello en este caso se realizará usando la metodología CRISP-DM y para encontrar los clúster se opta el algoritmo k-means que funciona muy bien con variables cuantitativas, pero presenta problemas con la presencia de valores extremos u outliers por ello uno de los primeros pasos a realizar es su detección. Luego de la aplicación del algoritmo se encontraron tres segmentos bien definidos por la pequeña empresa, la mediana empresa y la gran empresa. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-20T15:50:48Z |
dc.date.available.none.fl_str_mv |
2022-10-20T15:50:48Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.citation.es_PE.fl_str_mv |
Espinoza, M. (2022). Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means. [Trabajo de suficiencia profesional de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Estadística]. Repositorio institucional Cybertesis UNMSM. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12672/18631 |
identifier_str_mv |
Espinoza, M. (2022). Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means. [Trabajo de suficiencia profesional de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Estadística]. Repositorio institucional Cybertesis UNMSM. |
url |
https://hdl.handle.net/20.500.12672/18631 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Nacional Mayor de San Marcos Repositorio de Tesis - UNMSM |
dc.source.none.fl_str_mv |
reponame:UNMSM-Tesis instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
UNMSM-Tesis |
collection |
UNMSM-Tesis |
bitstream.url.fl_str_mv |
https://cybertesis.unmsm.edu.pe/bitstreams/f47e50e9-88f6-4e9b-8d47-0944e74bc1a0/download https://cybertesis.unmsm.edu.pe/bitstreams/1ce01837-1432-4920-9b37-d080ce5c664f/download https://cybertesis.unmsm.edu.pe/bitstreams/e7ac5b0e-ba19-41f5-84b1-4b2ba0b0bede/download https://cybertesis.unmsm.edu.pe/bitstreams/ed374ec6-fec2-4efa-a381-48733d3d66f0/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 b6a882d62f430712161251f13b574a8a a411f93169ccc02f189315cabc1745ef 7668200bc3adaa9f8ef78d94c253c8f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Cybertesis UNMSM |
repository.mail.fl_str_mv |
cybertesis@unmsm.edu.pe |
_version_ |
1841549561549553664 |
spelling |
Roque Paredes, OfeliaEspinoza Ballesteros, Moisés2022-10-20T15:50:48Z2022-10-20T15:50:48Z2022Espinoza, M. (2022). Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means. [Trabajo de suficiencia profesional de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Estadística]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/18631Propone identificar el tamaño en base a cinco variables los ingresos, egresos, activos, pasivos y patrimonio usando información recogida por el Instituto Nacional de Estadística e Informática en la Encuesta Económica Anual ejecutada en el años 2018, donde las empresas registran información del ejercicio económico del año 2017. Con esta premisa estamos ante un problema de segmentación o clustering, en toda problemática se tiene diversas maneras de abordarlo y encontrar una solución adecuada, por ello en este caso se realizará usando la metodología CRISP-DM y para encontrar los clúster se opta el algoritmo k-means que funciona muy bien con variables cuantitativas, pero presenta problemas con la presencia de valores extremos u outliers por ello uno de los primeros pasos a realizar es su detección. Luego de la aplicación del algoritmo se encontraron tres segmentos bien definidos por la pequeña empresa, la mediana empresa y la gran empresa.application/pdfspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Nacional Mayor de San MarcosRepositorio de Tesis - UNMSMreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMAlgoritmos - Problemas, ejercicios, etc.Clusters industrialeshttps://purl.org/pe-repo/ocde/ford#1.01.02https://purl.org/pe-repo/ocde/ford#1.01.03Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-meansinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en EstadísticaUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Profesional de EstadísticaEstadística06243124https://orcid.org/0000-0001-8280-021X43242345542016Huamán Gutiérrez, Zoraida JudithMolina Quiñones, Helfer Joelhttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#trabajoDeSuficienciaProfesional0989009440014631LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/f47e50e9-88f6-4e9b-8d47-0944e74bc1a0/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALEspinoza_bm.pdfEspinoza_bm.pdfapplication/pdf1578575https://cybertesis.unmsm.edu.pe/bitstreams/1ce01837-1432-4920-9b37-d080ce5c664f/downloadb6a882d62f430712161251f13b574a8aMD53TEXTEspinoza_bm.pdf.txtEspinoza_bm.pdf.txtExtracted texttext/plain66046https://cybertesis.unmsm.edu.pe/bitstreams/e7ac5b0e-ba19-41f5-84b1-4b2ba0b0bede/downloada411f93169ccc02f189315cabc1745efMD56THUMBNAILEspinoza_bm.pdf.jpgEspinoza_bm.pdf.jpgGenerated Thumbnailimage/jpeg13825https://cybertesis.unmsm.edu.pe/bitstreams/ed374ec6-fec2-4efa-a381-48733d3d66f0/download7668200bc3adaa9f8ef78d94c253c8f3MD5720.500.12672/18631oai:cybertesis.unmsm.edu.pe:20.500.12672/186312024-08-16 02:31:06.247https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.210282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).