Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means

Descripción del Articulo

Propone identificar el tamaño en base a cinco variables los ingresos, egresos, activos, pasivos y patrimonio usando información recogida por el Instituto Nacional de Estadística e Informática en la Encuesta Económica Anual ejecutada en el años 2018, donde las empresas registran información del ejerc...

Descripción completa

Detalles Bibliográficos
Autor: Espinoza Ballesteros, Moisés
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/18631
Enlace del recurso:https://hdl.handle.net/20.500.12672/18631
Nivel de acceso:acceso abierto
Materia:Algoritmos - Problemas, ejercicios, etc.
Clusters industriales
https://purl.org/pe-repo/ocde/ford#1.01.02
https://purl.org/pe-repo/ocde/ford#1.01.03
id UNMS_3d5b57e388c00a9e2129fe944214353a
oai_identifier_str oai:cybertesis.unmsm.edu.pe:20.500.12672/18631
network_acronym_str UNMS
network_name_str UNMSM-Tesis
repository_id_str 410
dc.title.es_PE.fl_str_mv Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
title Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
spellingShingle Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
Espinoza Ballesteros, Moisés
Algoritmos - Problemas, ejercicios, etc.
Clusters industriales
https://purl.org/pe-repo/ocde/ford#1.01.02
https://purl.org/pe-repo/ocde/ford#1.01.03
title_short Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
title_full Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
title_fullStr Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
title_full_unstemmed Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
title_sort Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means
author Espinoza Ballesteros, Moisés
author_facet Espinoza Ballesteros, Moisés
author_role author
dc.contributor.advisor.fl_str_mv Roque Paredes, Ofelia
dc.contributor.author.fl_str_mv Espinoza Ballesteros, Moisés
dc.subject.es_PE.fl_str_mv Algoritmos - Problemas, ejercicios, etc.
Clusters industriales
topic Algoritmos - Problemas, ejercicios, etc.
Clusters industriales
https://purl.org/pe-repo/ocde/ford#1.01.02
https://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
https://purl.org/pe-repo/ocde/ford#1.01.03
description Propone identificar el tamaño en base a cinco variables los ingresos, egresos, activos, pasivos y patrimonio usando información recogida por el Instituto Nacional de Estadística e Informática en la Encuesta Económica Anual ejecutada en el años 2018, donde las empresas registran información del ejercicio económico del año 2017. Con esta premisa estamos ante un problema de segmentación o clustering, en toda problemática se tiene diversas maneras de abordarlo y encontrar una solución adecuada, por ello en este caso se realizará usando la metodología CRISP-DM y para encontrar los clúster se opta el algoritmo k-means que funciona muy bien con variables cuantitativas, pero presenta problemas con la presencia de valores extremos u outliers por ello uno de los primeros pasos a realizar es su detección. Luego de la aplicación del algoritmo se encontraron tres segmentos bien definidos por la pequeña empresa, la mediana empresa y la gran empresa.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-20T15:50:48Z
dc.date.available.none.fl_str_mv 2022-10-20T15:50:48Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Espinoza, M. (2022). Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means. [Trabajo de suficiencia profesional de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Estadística]. Repositorio institucional Cybertesis UNMSM.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12672/18631
identifier_str_mv Espinoza, M. (2022). Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means. [Trabajo de suficiencia profesional de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Estadística]. Repositorio institucional Cybertesis UNMSM.
url https://hdl.handle.net/20.500.12672/18631
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional Mayor de San Marcos
Repositorio de Tesis - UNMSM
dc.source.none.fl_str_mv reponame:UNMSM-Tesis
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str UNMSM-Tesis
collection UNMSM-Tesis
bitstream.url.fl_str_mv https://cybertesis.unmsm.edu.pe/bitstreams/f47e50e9-88f6-4e9b-8d47-0944e74bc1a0/download
https://cybertesis.unmsm.edu.pe/bitstreams/1ce01837-1432-4920-9b37-d080ce5c664f/download
https://cybertesis.unmsm.edu.pe/bitstreams/e7ac5b0e-ba19-41f5-84b1-4b2ba0b0bede/download
https://cybertesis.unmsm.edu.pe/bitstreams/ed374ec6-fec2-4efa-a381-48733d3d66f0/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b6a882d62f430712161251f13b574a8a
a411f93169ccc02f189315cabc1745ef
7668200bc3adaa9f8ef78d94c253c8f3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Cybertesis UNMSM
repository.mail.fl_str_mv cybertesis@unmsm.edu.pe
_version_ 1841549561549553664
spelling Roque Paredes, OfeliaEspinoza Ballesteros, Moisés2022-10-20T15:50:48Z2022-10-20T15:50:48Z2022Espinoza, M. (2022). Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-means. [Trabajo de suficiencia profesional de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Estadística]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/18631Propone identificar el tamaño en base a cinco variables los ingresos, egresos, activos, pasivos y patrimonio usando información recogida por el Instituto Nacional de Estadística e Informática en la Encuesta Económica Anual ejecutada en el años 2018, donde las empresas registran información del ejercicio económico del año 2017. Con esta premisa estamos ante un problema de segmentación o clustering, en toda problemática se tiene diversas maneras de abordarlo y encontrar una solución adecuada, por ello en este caso se realizará usando la metodología CRISP-DM y para encontrar los clúster se opta el algoritmo k-means que funciona muy bien con variables cuantitativas, pero presenta problemas con la presencia de valores extremos u outliers por ello uno de los primeros pasos a realizar es su detección. Luego de la aplicación del algoritmo se encontraron tres segmentos bien definidos por la pequeña empresa, la mediana empresa y la gran empresa.application/pdfspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Nacional Mayor de San MarcosRepositorio de Tesis - UNMSMreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMAlgoritmos - Problemas, ejercicios, etc.Clusters industrialeshttps://purl.org/pe-repo/ocde/ford#1.01.02https://purl.org/pe-repo/ocde/ford#1.01.03Segmentación de empresas para identificar su tamaño empleando el algoritmo de k-meansinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en EstadísticaUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Profesional de EstadísticaEstadística06243124https://orcid.org/0000-0001-8280-021X43242345542016Huamán Gutiérrez, Zoraida JudithMolina Quiñones, Helfer Joelhttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#trabajoDeSuficienciaProfesional0989009440014631LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/f47e50e9-88f6-4e9b-8d47-0944e74bc1a0/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALEspinoza_bm.pdfEspinoza_bm.pdfapplication/pdf1578575https://cybertesis.unmsm.edu.pe/bitstreams/1ce01837-1432-4920-9b37-d080ce5c664f/downloadb6a882d62f430712161251f13b574a8aMD53TEXTEspinoza_bm.pdf.txtEspinoza_bm.pdf.txtExtracted texttext/plain66046https://cybertesis.unmsm.edu.pe/bitstreams/e7ac5b0e-ba19-41f5-84b1-4b2ba0b0bede/downloada411f93169ccc02f189315cabc1745efMD56THUMBNAILEspinoza_bm.pdf.jpgEspinoza_bm.pdf.jpgGenerated Thumbnailimage/jpeg13825https://cybertesis.unmsm.edu.pe/bitstreams/ed374ec6-fec2-4efa-a381-48733d3d66f0/download7668200bc3adaa9f8ef78d94c253c8f3MD5720.500.12672/18631oai:cybertesis.unmsm.edu.pe:20.500.12672/186312024-08-16 02:31:06.247https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).