Espectro de Fucik para un sistema acoplado
Descripción del Articulo
Estudia el Espectro de Fucik para un sistema acoplado de ecuaciones diferenciales ordinarias con valores en la frontera, donde λ+, λ−, μ− ∈ R+ ∪{0} , w+ = max{w, 0 } , w− = max{−w, 0 } y Bw = 0 representa las condiciones de frontera tipo Dirichlet o Neumann. Obtiene familias explícitas de puntos (λ+...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | UNMSM-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/5831 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12672/5831 |
| Nivel de acceso: | acceso abierto |
| Materia: | Ecuaciones diferenciales - Soluciones numéricas Teoría espectral (Matemáticas) https://purl.org/pe-repo/ocde/ford#1.01.00 |
| Sumario: | Estudia el Espectro de Fucik para un sistema acoplado de ecuaciones diferenciales ordinarias con valores en la frontera, donde λ+, λ−, μ− ∈ R+ ∪{0} , w+ = max{w, 0 } , w− = max{−w, 0 } y Bw = 0 representa las condiciones de frontera tipo Dirichlet o Neumann. Obtiene familias explícitas de puntos (λ+, λ−, μ−) del espectro de Fucik y construye familias explícitas de soluciones no triviales (u, v) para el problema dado. Demuestra que el espectro de Fucik está formado por superficies y describe explícitamente la parte trivial del espectro, correspondiente a soluciones que no cambian de signo, probando que para el problema Dirichlet está compuesto por un plano y un cilindro hiperbólico, y para el problema Neumann está compuesto por los tres planos coordenados. Luego, usando el Teorema de la Función Implícita, prueba la existencia de superficies en la parte no trivial del espectro, correspondiente a soluciones que cambian de signo. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).