Factores que determinan el embarazo adolescente a través de las técnicas del machine learning en el Perú, 2019-2020
Descripción del Articulo
Determina los factores más importantes que predicen el embarazo adolescente a través de la mejor técnica del machine learning en el Perú, durante los años 2019 al 2020. Para la elección de los factores asociados a la fecundidad adolescente para su posterior análisis se hace uso del marco teórico pro...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/25843 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/25843 |
Nivel de acceso: | acceso abierto |
Materia: | Machine Learning Embarazo en la adolescencia https://purl.org/pe-repo/ocde/ford#1.01.03 |
Sumario: | Determina los factores más importantes que predicen el embarazo adolescente a través de la mejor técnica del machine learning en el Perú, durante los años 2019 al 2020. Para la elección de los factores asociados a la fecundidad adolescente para su posterior análisis se hace uso del marco teórico propuesto por Di Cesare e Rodríguez-Vignoli en el año 2006. Se propone nueve técnicas de machine learning como son: Máquina de Vectores Soporte, Regresión Logística Binaria, Árbol de decisión, AdaBoost, Gradient Boosting, XGBoost, ExtraTrees, Bagging y Random Forest para el estudio del embarazo adolescente en el Perú, eligiéndose la mejor técnica a partir de sus métricas (Accuracy y ROC AUC). El presente trabajo de corte transversal utilizó la base de datos de la Encuesta Demográfica y de Salud Familiar (ENDES) 2019-2020 que fue dirigida por el Instituto Nacional de Estadística e Informática (INEI), utilizándose una muestra de 16825 mujeres adolescentes encuestadas entre los años 2019 al 2020. El estudio encuentra que la mejor técnica para predecir el embarazo adolescente a partir de los factores que se han tenido en cuenta es Random Forest (Accuracy = 96.58% y AUC = 99%), por otro lado, los factores más importantes fueron: Ha tenido una primera unión, seguido por Alguna vez usó cualquier método anticonceptivo y Actualmente asiste a la escuela, colegio, instituto o universidad. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).