The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
Descripción del Articulo
Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Nacional de Jaén |
| Repositorio: | UNJ-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.unj.edu.pe:UNJ/506 |
| Enlace del recurso: | http://repositorio.unj.edu.pe/handle/UNJ/506 https://doi.org/10.3389/fnut.2022.901333 |
| Nivel de acceso: | acceso abierto |
| Materia: | Electroencephalograms,Convolutions https://purl.org/pe-repo/ocde/ford#2.11.01 |
| id |
UNJA_cbf42120619b1b6bf42ffd86c4cdf1c9 |
|---|---|
| oai_identifier_str |
oai:repositorio.unj.edu.pe:UNJ/506 |
| network_acronym_str |
UNJA |
| network_name_str |
UNJ-Institucional |
| repository_id_str |
4820 |
| dc.title.es_ES.fl_str_mv |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| title |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| spellingShingle |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners Arteaga Miñano, Hubert Luzdemio Electroencephalograms,Convolutions https://purl.org/pe-repo/ocde/ford#2.11.01 |
| title_short |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| title_full |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| title_fullStr |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| title_full_unstemmed |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| title_sort |
The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners |
| author |
Arteaga Miñano, Hubert Luzdemio |
| author_facet |
Arteaga Miñano, Hubert Luzdemio |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Arteaga Miñano, Hubert Luzdemio |
| dc.subject.es_ES.fl_str_mv |
Electroencephalograms,Convolutions |
| topic |
Electroencephalograms,Convolutions https://purl.org/pe-repo/ocde/ford#2.11.01 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.01 |
| description |
Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. Despite the interest in artificial sweeteners, little is known about how artificial sweeteners are processed in the human brain. Here, we applied the convolutional neural network (CNN) to evaluate brain signals of 11 healthy subjects when they tasted passion fruit juice equivalently sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or aspartame (0.05477 g/100 g). Electroencephalograms were recorded for two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were disregarded, and the artifact-free data were used to feed a Deep Neural Network with tree branches that applied a Convolutions and pooling for different feature filtering and selection. The CNN received raw signal as input for multiclass classification and with supervised training was able to extract underling features and patterns from the signal with better performance than handcrafted filters like FFT. Our results indicated that CNN is an useful tool for electroencephalography (EEG) analyses and classification of perceptually similar tastes. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-03-09T16:04:57Z |
| dc.date.available.none.fl_str_mv |
2023-03-09T16:04:57Z |
| dc.date.issued.fl_str_mv |
2022-07-19 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_ES.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
http://repositorio.unj.edu.pe/handle/UNJ/506 |
| dc.identifier.doi.es_ES.fl_str_mv |
https://doi.org/10.3389/fnut.2022.901333 |
| url |
http://repositorio.unj.edu.pe/handle/UNJ/506 https://doi.org/10.3389/fnut.2022.901333 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.es_ES.fl_str_mv |
Frontiers in Nutrition Frontiers in Nutrition |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.es_ES.fl_str_mv |
application/pdf |
| dc.publisher.country.es_ES.fl_str_mv |
CH |
| dc.source.none.fl_str_mv |
reponame:UNJ-Institucional instname:Universidad Nacional de Jaén instacron:UNJ |
| instname_str |
Universidad Nacional de Jaén |
| instacron_str |
UNJ |
| institution |
UNJ |
| reponame_str |
UNJ-Institucional |
| collection |
UNJ-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.unj.edu.pe/bitstream/UNJ/506/2/license.txt http://repositorio.unj.edu.pe/bitstream/UNJ/506/3/ANEXO%208.pdf.txt http://repositorio.unj.edu.pe/bitstream/UNJ/506/4/ANEXO%208.pdf.jpg http://repositorio.unj.edu.pe/bitstream/UNJ/506/5/ANEXO%208-Articulo%204-HA.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fe991e3096ed5794fa47b0f9c4578f3 40a94aa6341fe50a1186a7ca8b96ad27 5f594f6c744a7505ba36e15f01f51b31 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio UNJ |
| repository.mail.fl_str_mv |
repositorio@unj.edu.pe |
| _version_ |
1846696864109297664 |
| spelling |
Arteaga Miñano, Hubert Luzdemio2023-03-09T16:04:57Z2023-03-09T16:04:57Z2022-07-19http://repositorio.unj.edu.pe/handle/UNJ/506https://doi.org/10.3389/fnut.2022.901333Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. Despite the interest in artificial sweeteners, little is known about how artificial sweeteners are processed in the human brain. Here, we applied the convolutional neural network (CNN) to evaluate brain signals of 11 healthy subjects when they tasted passion fruit juice equivalently sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or aspartame (0.05477 g/100 g). Electroencephalograms were recorded for two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were disregarded, and the artifact-free data were used to feed a Deep Neural Network with tree branches that applied a Convolutions and pooling for different feature filtering and selection. The CNN received raw signal as input for multiclass classification and with supervised training was able to extract underling features and patterns from the signal with better performance than handcrafted filters like FFT. Our results indicated that CNN is an useful tool for electroencephalography (EEG) analyses and classification of perceptually similar tastes.application/pdfspaFrontiers in NutritionFrontiers in Nutritioninfo:eu-repo/semantics/openAccessElectroencephalograms,Convolutionshttps://purl.org/pe-repo/ocde/ford#2.11.01The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweetenersinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCHreponame:UNJ-Institucionalinstname:Universidad Nacional de Jaéninstacron:UNJ40750321LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unj.edu.pe/bitstream/UNJ/506/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTANEXO 8.pdf.txtANEXO 8.pdf.txtExtracted texttext/plain997http://repositorio.unj.edu.pe/bitstream/UNJ/506/3/ANEXO%208.pdf.txt8fe991e3096ed5794fa47b0f9c4578f3MD53THUMBNAILANEXO 8.pdf.jpgANEXO 8.pdf.jpgGenerated Thumbnailimage/jpeg1594http://repositorio.unj.edu.pe/bitstream/UNJ/506/4/ANEXO%208.pdf.jpg40a94aa6341fe50a1186a7ca8b96ad27MD54ORIGINALANEXO 8-Articulo 4-HA.pdfANEXO 8-Articulo 4-HA.pdfapplication/pdf162418http://repositorio.unj.edu.pe/bitstream/UNJ/506/5/ANEXO%208-Articulo%204-HA.pdf5f594f6c744a7505ba36e15f01f51b31MD55UNJ/506oai:repositorio.unj.edu.pe:UNJ/5062024-02-26 21:23:25.308Repositorio UNJrepositorio@unj.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.377223 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).