The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners

Descripción del Articulo

Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit...

Descripción completa

Detalles Bibliográficos
Autor: Arteaga Miñano, Hubert Luzdemio
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/506
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/506
https://doi.org/10.3389/fnut.2022.901333
Nivel de acceso:acceso abierto
Materia:Electroencephalograms,Convolutions
https://purl.org/pe-repo/ocde/ford#2.11.01
id UNJA_cbf42120619b1b6bf42ffd86c4cdf1c9
oai_identifier_str oai:repositorio.unj.edu.pe:UNJ/506
network_acronym_str UNJA
network_name_str UNJ-Institucional
repository_id_str 4820
dc.title.es_ES.fl_str_mv The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
title The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
spellingShingle The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
Arteaga Miñano, Hubert Luzdemio
Electroencephalograms,Convolutions
https://purl.org/pe-repo/ocde/ford#2.11.01
title_short The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
title_full The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
title_fullStr The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
title_full_unstemmed The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
title_sort The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners
author Arteaga Miñano, Hubert Luzdemio
author_facet Arteaga Miñano, Hubert Luzdemio
author_role author
dc.contributor.author.fl_str_mv Arteaga Miñano, Hubert Luzdemio
dc.subject.es_ES.fl_str_mv Electroencephalograms,Convolutions
topic Electroencephalograms,Convolutions
https://purl.org/pe-repo/ocde/ford#2.11.01
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.01
description Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. Despite the interest in artificial sweeteners, little is known about how artificial sweeteners are processed in the human brain. Here, we applied the convolutional neural network (CNN) to evaluate brain signals of 11 healthy subjects when they tasted passion fruit juice equivalently sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or aspartame (0.05477 g/100 g). Electroencephalograms were recorded for two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were disregarded, and the artifact-free data were used to feed a Deep Neural Network with tree branches that applied a Convolutions and pooling for different feature filtering and selection. The CNN received raw signal as input for multiclass classification and with supervised training was able to extract underling features and patterns from the signal with better performance than handcrafted filters like FFT. Our results indicated that CNN is an useful tool for electroencephalography (EEG) analyses and classification of perceptually similar tastes.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-09T16:04:57Z
dc.date.available.none.fl_str_mv 2023-03-09T16:04:57Z
dc.date.issued.fl_str_mv 2022-07-19
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://repositorio.unj.edu.pe/handle/UNJ/506
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.3389/fnut.2022.901333
url http://repositorio.unj.edu.pe/handle/UNJ/506
https://doi.org/10.3389/fnut.2022.901333
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.es_ES.fl_str_mv Frontiers in Nutrition
Frontiers in Nutrition
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.country.es_ES.fl_str_mv CH
dc.source.none.fl_str_mv reponame:UNJ-Institucional
instname:Universidad Nacional de Jaén
instacron:UNJ
instname_str Universidad Nacional de Jaén
instacron_str UNJ
institution UNJ
reponame_str UNJ-Institucional
collection UNJ-Institucional
bitstream.url.fl_str_mv http://repositorio.unj.edu.pe/bitstream/UNJ/506/2/license.txt
http://repositorio.unj.edu.pe/bitstream/UNJ/506/3/ANEXO%208.pdf.txt
http://repositorio.unj.edu.pe/bitstream/UNJ/506/4/ANEXO%208.pdf.jpg
http://repositorio.unj.edu.pe/bitstream/UNJ/506/5/ANEXO%208-Articulo%204-HA.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fe991e3096ed5794fa47b0f9c4578f3
40a94aa6341fe50a1186a7ca8b96ad27
5f594f6c744a7505ba36e15f01f51b31
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNJ
repository.mail.fl_str_mv repositorio@unj.edu.pe
_version_ 1846696864109297664
spelling Arteaga Miñano, Hubert Luzdemio2023-03-09T16:04:57Z2023-03-09T16:04:57Z2022-07-19http://repositorio.unj.edu.pe/handle/UNJ/506https://doi.org/10.3389/fnut.2022.901333Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. Despite the interest in artificial sweeteners, little is known about how artificial sweeteners are processed in the human brain. Here, we applied the convolutional neural network (CNN) to evaluate brain signals of 11 healthy subjects when they tasted passion fruit juice equivalently sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or aspartame (0.05477 g/100 g). Electroencephalograms were recorded for two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were disregarded, and the artifact-free data were used to feed a Deep Neural Network with tree branches that applied a Convolutions and pooling for different feature filtering and selection. The CNN received raw signal as input for multiclass classification and with supervised training was able to extract underling features and patterns from the signal with better performance than handcrafted filters like FFT. Our results indicated that CNN is an useful tool for electroencephalography (EEG) analyses and classification of perceptually similar tastes.application/pdfspaFrontiers in NutritionFrontiers in Nutritioninfo:eu-repo/semantics/openAccessElectroencephalograms,Convolutionshttps://purl.org/pe-repo/ocde/ford#2.11.01The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweetenersinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCHreponame:UNJ-Institucionalinstname:Universidad Nacional de Jaéninstacron:UNJ40750321LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.unj.edu.pe/bitstream/UNJ/506/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTANEXO 8.pdf.txtANEXO 8.pdf.txtExtracted texttext/plain997http://repositorio.unj.edu.pe/bitstream/UNJ/506/3/ANEXO%208.pdf.txt8fe991e3096ed5794fa47b0f9c4578f3MD53THUMBNAILANEXO 8.pdf.jpgANEXO 8.pdf.jpgGenerated Thumbnailimage/jpeg1594http://repositorio.unj.edu.pe/bitstream/UNJ/506/4/ANEXO%208.pdf.jpg40a94aa6341fe50a1186a7ca8b96ad27MD54ORIGINALANEXO 8-Articulo 4-HA.pdfANEXO 8-Articulo 4-HA.pdfapplication/pdf162418http://repositorio.unj.edu.pe/bitstream/UNJ/506/5/ANEXO%208-Articulo%204-HA.pdf5f594f6c744a7505ba36e15f01f51b31MD55UNJ/506oai:repositorio.unj.edu.pe:UNJ/5062024-02-26 21:23:25.308Repositorio UNJrepositorio@unj.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.377223
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).