The convolutional neural network as a tool to classify electroencephalography data resulting from the consumption of juice sweetened with caloric or non-caloric sweeteners

Descripción del Articulo

Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit...

Descripción completa

Detalles Bibliográficos
Autor: Arteaga Miñano, Hubert Luzdemio
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Jaén
Repositorio:UNJ-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unj.edu.pe:UNJ/506
Enlace del recurso:http://repositorio.unj.edu.pe/handle/UNJ/506
https://doi.org/10.3389/fnut.2022.901333
Nivel de acceso:acceso abierto
Materia:Electroencephalograms,Convolutions
https://purl.org/pe-repo/ocde/ford#2.11.01
Descripción
Sumario:Sweetener type can influence sensory properties and consumer’s acceptance and preference for low-calorie products. An ideal sweetener does not exist, and each sweetener must be used in situations to which it is best suited. Aspartame and sucralose can be good substitutes for sucrose in passion fruit juice. Despite the interest in artificial sweeteners, little is known about how artificial sweeteners are processed in the human brain. Here, we applied the convolutional neural network (CNN) to evaluate brain signals of 11 healthy subjects when they tasted passion fruit juice equivalently sweetened with sucrose (9.4 g/100 g), sucralose (0.01593 g/100 g), or aspartame (0.05477 g/100 g). Electroencephalograms were recorded for two sites in the gustatory cortex (i.e., C3 and C4). Data with artifacts were disregarded, and the artifact-free data were used to feed a Deep Neural Network with tree branches that applied a Convolutions and pooling for different feature filtering and selection. The CNN received raw signal as input for multiclass classification and with supervised training was able to extract underling features and patterns from the signal with better performance than handcrafted filters like FFT. Our results indicated that CNN is an useful tool for electroencephalography (EEG) analyses and classification of perceptually similar tastes.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).