Un modelo vectorial de corrección de errores para la estimación del ingreso nacional del Perú

Descripción del Articulo

Traditionally, univariate models in time series are studied, such as the ARIMA model, and _x000D_ from this model there is an extension to multivariate VAR models and VEC models that are _x000D_ stationary and non-stationary. For non-stationary multivariate models, it is required to prove _x000D_ th...

Descripción completa

Detalles Bibliográficos
Autor: Huaylla Salazar, Edinson
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/18319
Enlace del recurso:https://hdl.handle.net/20.500.14414/18319
Nivel de acceso:acceso abierto
Materia:Modelos multivariantes no estacionarios VAR y VEC
Contrastes de cointegración
Descripción
Sumario:Traditionally, univariate models in time series are studied, such as the ARIMA model, and _x000D_ from this model there is an extension to multivariate VAR models and VEC models that are _x000D_ stationary and non-stationary. For non-stationary multivariate models, it is required to prove _x000D_ that the null hypothesis is non-stationary by means of the cointegration tests, with the objective _x000D_ of determining that the cointegration tests based on the VAR and VEC models are applicable in _x000D_ non-stationary multivariate models. The research that presents a study of applied, explanatory _x000D_ approach, studying the VAR and VEC models through the methodologies of the Dicker-Fuller _x000D_ Augmented Test and the method of the first differences, as well as the information criteria, _x000D_ including an example to be able to prove that the series of the models comply with the theory, obtaining that the series of the models are applicable in non-stationary multivariate models. It was concluded that the two models are applicable to long-term time series, and that both models have a common trend
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).