Exportación Completada — 

Diseño de un modelo computacional basado en técnicas de minería de datos para el pronóstico de la demanda de productos farmacéuticos

Descripción del Articulo

Survival in the highly competitive business today requires an accurate view of demand to implement production plans, inventory, distribution and purchase within business; the pharmaceutical industry is no exception, as the effects of seasonality, promotions, price changes, advertising, products with...

Descripción completa

Detalles Bibliográficos
Autores: Cabanillas Martínez, Elmer Jhosban, Martínez Reyes, Paul Fray
Formato: tesis de grado
Fecha de Publicación:2014
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/11296
Enlace del recurso:https://hdl.handle.net/20.500.14414/11296
Nivel de acceso:acceso abierto
Materia:Modelo computacional
Productos farmacéuticos
Descripción
Sumario:Survival in the highly competitive business today requires an accurate view of demand to implement production plans, inventory, distribution and purchase within business; the pharmaceutical industry is no exception, as the effects of seasonality, promotions, price changes, advertising, products with low or high motion and outliers generally affect the determination of the same. In this context, above forecast demand among its consequences the drug excess inventory, obsolescence or expiration, and on the other hand, below the forecast demand has resulted in the loss of sales and a possible increase in costs . As mentioned, the theme focuses on the development of a computational model, which the techniques of artificial neural networks and genetic algorithms for forecasting demand for products used._x000D_ In the present work an analysis and comparison of computational models and then the data mining techniques is performed, which I decided to use the most appropriate for the development of computer modeling techniques (Which used a multilayer perceptron neural network with backpropagation algorithm optimized with genetic algorithms) with the traditional model (only used multilayer Perceptron neural network with backpropagation algorithm) for forecasting the demand for pharmaceuticals.._x000D_ The accuracies and errors obtained by each of them are: our proposed model has 98.55% accuracy and 1.45% error, the traditional model have 89.0589% accuracy and 10.9410% error._x000D_ This leads to the conclusion that neural networks can be optimized using genetic algorithms, in order to get better results for different problems are proposed
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).