Detección de anomalías en diversas redes de sensores utilizando machine learning

Descripción del Articulo

Los sismos han logrando causar daños catastróficos en las infraestructuras urbanas y rurales resultando en pérdida de cientos de vidas humanas, deslizamientos, desprendimientos, y pérdida económica, hechos inevitables pese al avance tecnológico como la predicción y estimación del epicentro, de la ma...

Descripción completa

Detalles Bibliográficos
Autor: Miranda Arango, Yerson Elmer
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional San Luis Gonzaga de Ica
Repositorio:UNICA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unica.edu.pe:20.500.13028/6971
Enlace del recurso:https://hdl.handle.net/20.500.13028/6971
Nivel de acceso:acceso abierto
Materia:Precursor de un sismo
Detección
Machine learning
Earthquake precursor
https://purl.org/pe-repo/ocde/ford#2.02.00
Descripción
Sumario:Los sismos han logrando causar daños catastróficos en las infraestructuras urbanas y rurales resultando en pérdida de cientos de vidas humanas, deslizamientos, desprendimientos, y pérdida económica, hechos inevitables pese al avance tecnológico como la predicción y estimación del epicentro, de la magnitud y el tiempo del sismo; por ello, el proposito del presente estudio es desarrollar técnicas para la detección de anomalías en diversas redes de sensores utilizando machine learning. Para estudiar la detección de precursores de un sismo se aplicaron técnicas de detección de precursores de un sismos basada en modelos para la generación de señales de detección de precursores de un sismo, y de fiabilidad del contenido total de electrones. Los resultados obtenidos muestran una alta precisión en la detección de precursores de un sismo, con una tasa de detección superior al 70% para sismos de magnitud superior a 5.4 en la escala de Richter, mientras que se mantiene una baja tasa de falsas alarmas. Además, se logró una distancia promedio de detección de precursores de aproximadamente 2300 km, lo que sugiere que el método es capaz de detectar anomalías ionosféricas relacionadas con actividad sísmica en un área geográfica amplia.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).