Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning

Descripción del Articulo

La región de Piura - Perú tiene como uno de los principales productos de exportación y fuente de ingresos el banano. Sin embargo; existe una creciente reducción su exportación por la presencia mancha roja causada por trips (Chaetanaphothrips signipennis), disminuyendo esto su aceptabilidad comercial...

Descripción completa

Detalles Bibliográficos
Autor: Cortez Falla, Hugo Joakyn
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional de Frontera
Repositorio:UNFS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unf.edu.pe:UNF/208
Enlace del recurso:http://repositorio.unf.edu.pe/handle/UNF/208
Nivel de acceso:acceso abierto
Materia:Banano
Mancha Roja
Imágenes hiperespectrales
Perfiles Espectrales
Machine learning
http://purl.org/pe-repo/ocde/ford#2.11.01
id UNFS_7dfb00278c05f1a2322d15578223491d
oai_identifier_str oai:repositorio.unf.edu.pe:UNF/208
network_acronym_str UNFS
network_name_str UNFS-Institucional
repository_id_str 4235
dc.title.es_ES.fl_str_mv Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
title Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
spellingShingle Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
Cortez Falla, Hugo Joakyn
Banano
Mancha Roja
Imágenes hiperespectrales
Perfiles Espectrales
Machine learning
http://purl.org/pe-repo/ocde/ford#2.11.01
title_short Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
title_full Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
title_fullStr Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
title_full_unstemmed Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
title_sort Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learning
author Cortez Falla, Hugo Joakyn
author_facet Cortez Falla, Hugo Joakyn
author_role author
dc.contributor.advisor.fl_str_mv Castro Silupú, Wilson Manuel
dc.contributor.author.fl_str_mv Cortez Falla, Hugo Joakyn
dc.subject.es_ES.fl_str_mv Banano
Mancha Roja
Imágenes hiperespectrales
Perfiles Espectrales
Machine learning
topic Banano
Mancha Roja
Imágenes hiperespectrales
Perfiles Espectrales
Machine learning
http://purl.org/pe-repo/ocde/ford#2.11.01
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.11.01
description La región de Piura - Perú tiene como uno de los principales productos de exportación y fuente de ingresos el banano. Sin embargo; existe una creciente reducción su exportación por la presencia mancha roja causada por trips (Chaetanaphothrips signipennis), disminuyendo esto su aceptabilidad comercial. Por tanto; el objetivo de esta investigación fue determinar la factibilidad del seguimiento de infección por trips (Chaetanaphothrips signipennis) de la mancha roja en banano (musa paradisiaca) mediante perfiles espectrales y técnicas de machine learning. Una muestra de 256 bananos con diferentes niveles de progresión de infección por trips (Chaetanaphothrips signipennis), codificadas 1 a 3, fue recolectada en campos de cultivo del distrito de Marcavelica en la provincia de Sullana. Posteriormente, se obtuvieron imágenes hiperespectrales en el rango de 400 a 1000 nm, distribuidas en 224 longitudes de onda. Se desarrolló un programa en Matlab 2019a mediante el cual un evaluador entrenado extrajo perfiles representativos de áreas con los diferentes niveles de enfermedad. Finalmente fueron construidos modelos de clasificación con técnicas de machine learning SVM cuadrático, SVM cúbico y discriminante subespacial. Los modelos se validaron por el método de validación cruzada (k=5), repitiendo los cálculos cuarenta veces y reportando la precisión media en cada repetición. Los resultados muestran que el clasificador discriminante subespacial logró una precisión media de 91.9 %, mientras que el SVM cuadrático y SVM cúbico lograron medias de 84.0 y 80.8 % respectivamente. Se concluye que es factible realizar el seguimiento de infección por trips (Chaetanaphothrips signipennis) de la mancha roja en banano (musa paradisiaca) mediante perfiles espectrales y técnicas de machine learning, con tasas de éxito de hasta 94 %.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-23T16:04:20Z
dc.date.available.none.fl_str_mv 2022-12-23T16:04:20Z
dc.date.issued.fl_str_mv 2022-12-22
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.unf.edu.pe/handle/UNF/208
url http://repositorio.unf.edu.pe/handle/UNF/208
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Universidad Nacional de Frontera
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.es_ES.fl_str_mv Universidad Nacional de Frontera
Repositorio Institucional - UNF
dc.source.none.fl_str_mv reponame:UNFS-Institucional
instname:Universidad Nacional de Frontera
instacron:UNFS
instname_str Universidad Nacional de Frontera
instacron_str UNFS
institution UNFS
reponame_str UNFS-Institucional
collection UNFS-Institucional
bitstream.url.fl_str_mv https://repositorio.unf.edu.pe/bitstreams/b1311eca-7f1e-4943-aa60-30dcbf5142ff/download
https://repositorio.unf.edu.pe/bitstreams/7f55703b-c576-4ae6-829a-f30d055fd223/download
https://repositorio.unf.edu.pe/bitstreams/259e5ae6-fc94-4ba7-98cf-c04062b97b0f/download
https://repositorio.unf.edu.pe/bitstreams/f7b54951-44e6-4d4b-a92e-47527ca9bf51/download
https://repositorio.unf.edu.pe/bitstreams/88208dd6-01f2-4bac-8512-8d596d9e637b/download
bitstream.checksum.fl_str_mv 74a30ad3bc0837cfbfd7f760dc9ccaa5
3655808e5dd46167956d6870b0f43800
8a4605be74aa9ea9d79846c1fba20a33
2d6e32024b9177fcb7003c45bbc3ae05
f78dae798a55e4b27b26fc01ef4a40aa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de UNF
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1807024465906761728
spelling Castro Silupú, Wilson ManuelCortez Falla, Hugo Joakyn2022-12-23T16:04:20Z2022-12-23T16:04:20Z2022-12-22http://repositorio.unf.edu.pe/handle/UNF/208La región de Piura - Perú tiene como uno de los principales productos de exportación y fuente de ingresos el banano. Sin embargo; existe una creciente reducción su exportación por la presencia mancha roja causada por trips (Chaetanaphothrips signipennis), disminuyendo esto su aceptabilidad comercial. Por tanto; el objetivo de esta investigación fue determinar la factibilidad del seguimiento de infección por trips (Chaetanaphothrips signipennis) de la mancha roja en banano (musa paradisiaca) mediante perfiles espectrales y técnicas de machine learning. Una muestra de 256 bananos con diferentes niveles de progresión de infección por trips (Chaetanaphothrips signipennis), codificadas 1 a 3, fue recolectada en campos de cultivo del distrito de Marcavelica en la provincia de Sullana. Posteriormente, se obtuvieron imágenes hiperespectrales en el rango de 400 a 1000 nm, distribuidas en 224 longitudes de onda. Se desarrolló un programa en Matlab 2019a mediante el cual un evaluador entrenado extrajo perfiles representativos de áreas con los diferentes niveles de enfermedad. Finalmente fueron construidos modelos de clasificación con técnicas de machine learning SVM cuadrático, SVM cúbico y discriminante subespacial. Los modelos se validaron por el método de validación cruzada (k=5), repitiendo los cálculos cuarenta veces y reportando la precisión media en cada repetición. Los resultados muestran que el clasificador discriminante subespacial logró una precisión media de 91.9 %, mientras que el SVM cuadrático y SVM cúbico lograron medias de 84.0 y 80.8 % respectivamente. Se concluye que es factible realizar el seguimiento de infección por trips (Chaetanaphothrips signipennis) de la mancha roja en banano (musa paradisiaca) mediante perfiles espectrales y técnicas de machine learning, con tasas de éxito de hasta 94 %.Tesisapplication/pdfspaUniversidad Nacional de FronteraPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de FronteraRepositorio Institucional - UNFreponame:UNFS-Institucionalinstname:Universidad Nacional de Fronterainstacron:UNFSBananoMancha RojaImágenes hiperespectralesPerfiles EspectralesMachine learninghttp://purl.org/pe-repo/ocde/ford#2.11.01Seguimiento de la progresión de infección superficial de Banano (Musa paradisiaca) por trips de la mancha roja (Chaetanaphothrips signipennis) mediante perfiles espectrales y machine learninginfo:eu-repo/semantics/bachelorThesisSUNEDUTitulo ProfesionalCortez Falla, Hugo JoakynUniversidad Nacional de Frontera. Facultad de Ingeniería de Industrias Alimentarias y BiotecnologíaIngeniería de Industrias Alimentarias40322327https://orcid.org/0000-0001-7286-126271741097721046Lachira Estrada, Diego SalvadorEspinoza Delgado, Milagros del PilarSaavedra Cano, Fermín Máximohttp://purl.org/pe-repo/renati/nivel#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisORIGINALTESIS - Cortez Falla, Hugo Joakyn.pdfTESIS - Cortez Falla, Hugo Joakyn.pdfapplication/pdf3492588https://repositorio.unf.edu.pe/bitstreams/b1311eca-7f1e-4943-aa60-30dcbf5142ff/download74a30ad3bc0837cfbfd7f760dc9ccaa5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unf.edu.pe/bitstreams/7f55703b-c576-4ae6-829a-f30d055fd223/download3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unf.edu.pe/bitstreams/259e5ae6-fc94-4ba7-98cf-c04062b97b0f/download8a4605be74aa9ea9d79846c1fba20a33MD53TEXTTESIS - Cortez Falla, Hugo Joakyn.pdf.txtTESIS - Cortez Falla, Hugo Joakyn.pdf.txtExtracted texttext/plain69961https://repositorio.unf.edu.pe/bitstreams/f7b54951-44e6-4d4b-a92e-47527ca9bf51/download2d6e32024b9177fcb7003c45bbc3ae05MD54THUMBNAILTESIS - Cortez Falla, Hugo Joakyn.pdf.jpgTESIS - Cortez Falla, Hugo Joakyn.pdf.jpgGenerated Thumbnailimage/jpeg5414https://repositorio.unf.edu.pe/bitstreams/88208dd6-01f2-4bac-8512-8d596d9e637b/downloadf78dae798a55e4b27b26fc01ef4a40aaMD55UNF/208oai:repositorio.unf.edu.pe:UNF/2082024-05-27 15:35:01.876http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unf.edu.peRepositorio Institucional de UNFdspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.772006
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).