Detección de fraude en pasta de tomate usando imágenes hiperespectrales de transmitancia y aprendizaje automático

Descripción del Articulo

El presente estudio determina la capacidad de las imágenes hiperespectrales de transmitancia y el aprendizaje automático para detectar la adulteración de pasta de tomate con fécula de maíz. Las muestras de tomate se adquirieron en el mercado local de Sullana, se seleccionaron frutos maduros, firmes...

Descripción completa

Detalles Bibliográficos
Autor: Lee Rivas, Renato Alexander
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional de Frontera
Repositorio:UNFS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unf.edu.pe:UNF/271
Enlace del recurso:http://repositorio.unf.edu.pe/handle/UNF/271
Nivel de acceso:acceso abierto
Materia:Pasta de tomate
Adulteración
Espectroscopía de imagen
Transmitancia
Quimiometría
http://purl.org/pe-repo/ocde/ford#2.11.01
Descripción
Sumario:El presente estudio determina la capacidad de las imágenes hiperespectrales de transmitancia y el aprendizaje automático para detectar la adulteración de pasta de tomate con fécula de maíz. Las muestras de tomate se adquirieron en el mercado local de Sullana, se seleccionaron frutos maduros, firmes e intactos, y se procesaron para obtener pulpa de tomate. Luego, las muestras de pasta de tomate se adulteraron con diferentes concentraciones de fécula de maíz (2, 4, 6, 8 y 10%). Se adquirieron imágenes hiperespectrales en modo transmitancia en el rango espectral de 400 a 1000 nm. Asimismo, paralelamente se realizaron análisis de referencia de pH y color. Los espectros se pretrataron con SNV, Baseline y MSC y luego se utilizaron para modelar los datos con PLSR. El modelo PLSR se implementó con los espectros completos y luego con los espectros optimizados, que se seleccionaron en función de los coeficientes beta (6 longitudes de onda). Se evidenció que el modelo PLSR optimizado utilizando datos sin preprocesar obtuvo el mejor rendimiento (R2= 0,943; RMSE= 0.412), seguido del modelo PLSR optimizado utilizando datos preprocesados con la línea base (R2= 0,942; RMSE= 0,413). Estos resultados sugieren que las imágenes hiperespectrales de transmisión y el aprendizaje automático pueden ser efectivos para detectar la adulteración de pasta de tomate con fécula de maíz.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).