Modelo hidrológico de predicción de caudales de avenida mediante redes bayesianas en la Subcuenca del Rio Shullcas en el 2016

Descripción del Articulo

Esta investigación tiene por objetivo el desarrollo de un modelo hidrológico de predicción de caudales de avenida construido a partir de las características geomorfológicas y datos hidrometeorológicos de la cuenca y posteriormente validado a través de las redes bayesianas. El área de estudio es la s...

Descripción completa

Detalles Bibliográficos
Autor: Gonzales Gomez, Hugo Andre
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Nacional del Centro del Perú
Repositorio:UNCP - Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uncp.edu.pe:20.500.12894/8125
Enlace del recurso:http://hdl.handle.net/20.500.12894/8125
Nivel de acceso:acceso abierto
Materia:Modelo hidrológico
Caudales
Redes Bayesianas
https://purl.org/pe-repo/ocde/ford#2.01.01
Descripción
Sumario:Esta investigación tiene por objetivo el desarrollo de un modelo hidrológico de predicción de caudales de avenida construido a partir de las características geomorfológicas y datos hidrometeorológicos de la cuenca y posteriormente validado a través de las redes bayesianas. El área de estudio es la sub cuenca del río Shullcas, ubicada en la región Junín que forma parte de la cuenca del río Mantaro. Para llevar a cabo el modelamiento hidrológico es indispensable contar con información hidrometeorológica de diferentes estaciones presentes en la cuenca, estos registros de precipitación y temperatura se suministran al modelo para que se puedan generar caudales que puedan compararse con los caudales observados en el punto de aforo, para esta comparación se utilizaron valores estadísticos de calibración proporcionados por el modelo HBV, los cuales hacen que los caudales observados y simulados se asemejen lo más posible. Finalmente, para hacer uso de las redes bayesianas es necesario estructurar las redes con variables que son suministradas por el modelo HBV, las cuales después de un proceso de correlación sirvieron para definir las estructuras de las dos redes bayesianas a utilizar, de las cuales se eligió la que tuvo menor error. Las redes bayesianas trabajan con un grupo de datos discretizados y clasificados, luego de obtener la base de datos q usar a través del programa NETICA se procedió a crear nodos y conexiones entre las variables intervinientes para poder tener las probabilidades a posteriori. Para el aprendizaje de las redes bayesianas se usaron el 70% de datos totales y luego para su validación el otro 30% de los casos. Para tener una evidencia de validez se observa la tasa de error de la misma, en este caso la red bayesiana N° 2 presento un menor error de predicción que la red bayesiana N° 1.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).