Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses

Descripción del Articulo

The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model. The combination of the Genetic algorithm (GA)...

Descripción completa

Detalles Bibliográficos
Autores: Thongchai Botmart, Zulqurnain Sabir b, Shumaila Javeed c, Rafaél Artidoro Sandoval Núñez d, Wajaree weera a, Mohamed R. Ali e, R. Sadat f
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Autónoma de Chota
Repositorio:UNACH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unach.edu.pe:20.500.14142/357
Enlace del recurso:http://hdl.handle.net/20.500.14142/357
https://doi.org/10.1016/j.imu.2022.101028
Nivel de acceso:acceso abierto
Materia:Spread of COVID-19
Nonlinear SEIR-NDC model
Artificial neural networks
http://purl.org/pe-repo/ocde/ford#3.03.03
id UNCH_f03b1c660f0d2938e0870b9be1953a61
oai_identifier_str oai:repositorio.unach.edu.pe:20.500.14142/357
network_acronym_str UNCH
network_name_str UNACH-Institucional
repository_id_str 4826
dc.title.es_ES.fl_str_mv Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
title Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
spellingShingle Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
Thongchai Botmart
Spread of COVID-19
Nonlinear SEIR-NDC model
Artificial neural networks
http://purl.org/pe-repo/ocde/ford#3.03.03
title_short Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
title_full Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
title_fullStr Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
title_full_unstemmed Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
title_sort Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses
author Thongchai Botmart
author_facet Thongchai Botmart
Zulqurnain Sabir b
Shumaila Javeed c
Rafaél Artidoro Sandoval Núñez d
Wajaree weera a
Mohamed R. Ali e
R. Sadat f
author_role author
author2 Zulqurnain Sabir b
Shumaila Javeed c
Rafaél Artidoro Sandoval Núñez d
Wajaree weera a
Mohamed R. Ali e
R. Sadat f
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Thongchai Botmart
Zulqurnain Sabir b
Shumaila Javeed c
Rafaél Artidoro Sandoval Núñez d
Wajaree weera a
Mohamed R. Ali e
R. Sadat f
dc.subject.es_ES.fl_str_mv Spread of COVID-19
Nonlinear SEIR-NDC model
Artificial neural networks
topic Spread of COVID-19
Nonlinear SEIR-NDC model
Artificial neural networks
http://purl.org/pe-repo/ocde/ford#3.03.03
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#3.03.03
description The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model. The combination of the Genetic algorithm (GA) and active-set approach (ASA), i.e., GA-ASA, works as a global-local search scheme to solve the SEIR-NDC model. An error-based fitness function is optimized through the hybrid combination of the GA-ASA by using the differential SEIR-NDC model and its initial conditions. The numerical performances of the SEIR-NDC nonlinear model are presented through the procedures of ANNs along with GA-ASA by taking ten neurons. The orrectness of the designed scheme is observed by comparing the obtained results based on the SEIR-NDC model and the reference Adams method. The absolute error performances are performed in suitable ranges for each dynamic of the SEIR-NDC model. The statistical analysis is provided to authenticate the reliability of the proposed scheme. Moreover, performance indices graphs and convergence measures are provided to authenticate the exactness and constancy of the proposed stochastic scheme.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-07T22:20:41Z
dc.date.available.none.fl_str_mv 2023-03-07T22:20:41Z
dc.date.issued.fl_str_mv 2022-07-16
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14142/357
dc.identifier.doi.es_ES.fl_str_mv https://doi.org/10.1016/j.imu.2022.101028
url http://hdl.handle.net/20.500.14142/357
https://doi.org/10.1016/j.imu.2022.101028
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.es_ES.fl_str_mv Informatics in Medicine Unlocked
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Informatics in Medicine Unlocked
dc.publisher.country.es_ES.fl_str_mv BT
dc.source.es_ES.fl_str_mv Informatics in Medicine Unlocked 32 (2022) 101028
dc.source.none.fl_str_mv reponame:UNACH-Institucional
instname:Universidad Nacional Autónoma de Chota
instacron:UNACH
instname_str Universidad Nacional Autónoma de Chota
instacron_str UNACH
institution UNACH
reponame_str UNACH-Institucional
collection UNACH-Institucional
bitstream.url.fl_str_mv https://repositorio.unach.edu.pe/bitstreams/780f55d9-17cd-4d92-ac9a-55c86c0c32bc/download
https://repositorio.unach.edu.pe/bitstreams/04b5c85f-790a-4919-be2f-43ccb2b82fb6/download
https://repositorio.unach.edu.pe/bitstreams/7ec536ff-724e-4c54-a3ad-699acd20ef1c/download
bitstream.checksum.fl_str_mv 6707e644441db27090481fbdd0ac7b3e
8a4605be74aa9ea9d79846c1fba20a33
cc91ef05020ac83db1fbf3c01f14a73c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNACH
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1834655619946119168
spelling Thongchai BotmartZulqurnain Sabir bShumaila Javeed cRafaél Artidoro Sandoval Núñez dWajaree weera aMohamed R. Ali eR. Sadat f2023-03-07T22:20:41Z2023-03-07T22:20:41Z2022-07-16http://hdl.handle.net/20.500.14142/357https://doi.org/10.1016/j.imu.2022.101028The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model. The combination of the Genetic algorithm (GA) and active-set approach (ASA), i.e., GA-ASA, works as a global-local search scheme to solve the SEIR-NDC model. An error-based fitness function is optimized through the hybrid combination of the GA-ASA by using the differential SEIR-NDC model and its initial conditions. The numerical performances of the SEIR-NDC nonlinear model are presented through the procedures of ANNs along with GA-ASA by taking ten neurons. The orrectness of the designed scheme is observed by comparing the obtained results based on the SEIR-NDC model and the reference Adams method. The absolute error performances are performed in suitable ranges for each dynamic of the SEIR-NDC model. The statistical analysis is provided to authenticate the reliability of the proposed scheme. Moreover, performance indices graphs and convergence measures are provided to authenticate the exactness and constancy of the proposed stochastic scheme.application/pdfengInformatics in Medicine UnlockedBTInformatics in Medicine Unlockedinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Informatics in Medicine Unlocked 32 (2022) 101028reponame:UNACH-Institucionalinstname:Universidad Nacional Autónoma de Chotainstacron:UNACHSpread of COVID-19Nonlinear SEIR-NDC modelArtificial neural networkshttp://purl.org/pe-repo/ocde/ford#3.03.03Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responsesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALABSTRACT .pdfABSTRACT .pdfapplication/pdf210764https://repositorio.unach.edu.pe/bitstreams/780f55d9-17cd-4d92-ac9a-55c86c0c32bc/download6707e644441db27090481fbdd0ac7b3eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unach.edu.pe/bitstreams/04b5c85f-790a-4919-be2f-43ccb2b82fb6/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILportada 357.pngportada 357.pngimage/png153976https://repositorio.unach.edu.pe/bitstreams/7ec536ff-724e-4c54-a3ad-699acd20ef1c/downloadcc91ef05020ac83db1fbf3c01f14a73cMD5320.500.14142/357oai:repositorio.unach.edu.pe:20.500.14142/3572023-03-07 23:22:29.483https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.unach.edu.peRepositorio UNACHdspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).