Neural Network Strategies and Models for Voice Cloning in a Multi-speaker Mode: An Overview

Descripción del Articulo

The evolution of data science and the constant challenge of carrying out different processes using a few resources with simultaneous personalization has promoted interest in the development of voice cloning. Nowadays, different machine learning techniques are used, given their efficiency in generati...

Descripción completa

Detalles Bibliográficos
Autores: Fura-Mendoza, Marco, Moscol-Albañil, Isabel, Rodriguez, Ciro, Lezama, Pedro, Rodriguez, Diego, Pomachagua, Yuri
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669499
Enlace del recurso:http://hdl.handle.net/10757/669499
Nivel de acceso:acceso embargado
Materia:multi-speaker
neural networks
Voice cloning
https://purl.org/pe-repo/ocde/ford#3.00.00
Descripción
Sumario:The evolution of data science and the constant challenge of carrying out different processes using a few resources with simultaneous personalization has promoted interest in the development of voice cloning. Nowadays, different machine learning techniques are used, given their efficiency in generating relationships across multiple parameters. In this regard, we evaluated the best-performing models and the different process optimization strategies within this sector, where through neural network models separated modularly by their functionality, it is possible to generate independent processes taking into account the most significant number of linguistic factors in the generation of the voice, thus obtaining significant results of a clear improvement in the whole process of synthesizing the voice of a target speaker.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).