Neural Network Strategies and Models for Voice Cloning in a Multi-speaker Mode: An Overview
Descripción del Articulo
The evolution of data science and the constant challenge of carrying out different processes using a few resources with simultaneous personalization has promoted interest in the development of voice cloning. Nowadays, different machine learning techniques are used, given their efficiency in generati...
| Autores: | , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/669499 |
| Enlace del recurso: | http://hdl.handle.net/10757/669499 |
| Nivel de acceso: | acceso embargado |
| Materia: | multi-speaker neural networks Voice cloning https://purl.org/pe-repo/ocde/ford#3.00.00 |
| Sumario: | The evolution of data science and the constant challenge of carrying out different processes using a few resources with simultaneous personalization has promoted interest in the development of voice cloning. Nowadays, different machine learning techniques are used, given their efficiency in generating relationships across multiple parameters. In this regard, we evaluated the best-performing models and the different process optimization strategies within this sector, where through neural network models separated modularly by their functionality, it is possible to generate independent processes taking into account the most significant number of linguistic factors in the generation of the voice, thus obtaining significant results of a clear improvement in the whole process of synthesizing the voice of a target speaker. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).