Redes neuronales artificiales para pronosticar el rendimiento académico de alumnos de ingeniería de sistemas e informática de la Universidad Nacional de la Amazonía Peruana

Descripción del Articulo

In the research carried out on the prediction of academic performance in the Linear Algebra course at the Faculty of Systems Engineering and Informatics of the National University of the Peruvian Amazon, an attempt was made to determine if machine learning techniques could improve the accuracy of id...

Descripción completa

Detalles Bibliográficos
Autores: Puga de la Cruz, Jorge, Torres Monzon, Rony
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/9204
Enlace del recurso:https://hdl.handle.net/20.500.12737/9204
Nivel de acceso:acceso abierto
Materia:Inteligencia artificial
Redes neuronales de la computación
Eficiencia de la educación
Estudiante universitario
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:In the research carried out on the prediction of academic performance in the Linear Algebra course at the Faculty of Systems Engineering and Informatics of the National University of the Peruvian Amazon, an attempt was made to determine if machine learning techniques could improve the accuracy of identification. of passing and failing students. Applied research with a predictive level was carried out using all available electronic data and tools such as MATLAB Neural Network Toolbox and MS Excel were used for analysis, as well as artificial neural networks. The results indicated a precision of 97.6%, a completeness of 100% and an accuracy of 97.9%, with a %E of 2.083 and a CE of 0.196274, surpassing the results obtained in similar studies. In conclusion, the research showed that machine learning techniques are effective in predicting academic performance in the Linear Algebra course, obtaining superior results to those of similar studies.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).