Análisis bibliométrico de la producción científica sobre estudios en malaria e inteligencia artificial 2000 – 2024

Descripción del Articulo

Introduction: Malaria is one of the most prevalent infectious diseases globally, especially in developing countries. In recent years, artificial intelligence (AI) has proven to be a promising tool in the research and management of diseases such as malaria. However, the scientific production on the i...

Descripción completa

Detalles Bibliográficos
Autor: Hernández López, Cecilia
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/10791
Enlace del recurso:https://hdl.handle.net/20.500.12737/10791
Nivel de acceso:acceso abierto
Materia:Malaria
Inteligencia artificial
Publicación cientifica
Bibliometría
https://purl.org/pe-repo/ocde/ford#3.03.08
Descripción
Sumario:Introduction: Malaria is one of the most prevalent infectious diseases globally, especially in developing countries. In recent years, artificial intelligence (AI) has proven to be a promising tool in the research and management of diseases such as malaria. However, the scientific production on the intersection between malaria and AI requires a bibliometric analysis to understand its trends and development patterns. Objective: To describe the scientific production on Malaria and Artificial Intelligence studies in Scopus and Web of Science databases, from January 2000 to June 2024. Methods: A bibliometric study was conducted, using a cross-sectional and retrospective approach. Population: The population included all articles published in the Scopus and Web of Science databases within the specified period, resulting in a final sample of 525 articles after filtering for duplicates. Results: Scientific production in this field has shown significant growth since 2017, peaking in 2022 with 86 publications. The United States leads in terms of number of publications (383), followed by the United Kingdom (231) and India (218). The most productive institutions were the University of Oxford and the London School of Hygiene and Tropical Medicine. The most frequent keywords in the studies included “malaria,” “plasmodium falciparum,” and “machine learning,” highlighting the focus of artificial intelligence in malaria diagnosis and management. Conclusion: The bibliometric analysis demonstrates a growing integration of artificial intelligence in malaria studies, concentrated in countries with greater technological resources. This interdisciplinary approach presents opportunities for research expansion, especially in endemic regions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).