Modelo de redes neuronales para la estimación del equilibrio termodinámico líquido-vapor en mezclas de dióxido de carbono-acetato de isopropílico

Descripción del Articulo

This research addresses the challenge of accurately estimating the liquid vapor thermodynamic equilibrium in mixtures of carbon dioxide and isopropyl acetate using artificial neural networks. The main goal is to develop a model that surpasses the limitations of traditional methods, providing more pr...

Descripción completa

Detalles Bibliográficos
Autores: Castillo Sanchez, Juan Carlos, Nuñez Peñaherrera, Jefferson Alexander
Formato: tesis de maestría
Fecha de Publicación:2024
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/10429
Enlace del recurso:https://hdl.handle.net/20.500.12737/10429
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Informática)
Equilibrio termodinámico
Líquidos
Vapores
Dióxido de carbono
Acetato
2-Propanol
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:This research addresses the challenge of accurately estimating the liquid vapor thermodynamic equilibrium in mixtures of carbon dioxide and isopropyl acetate using artificial neural networks. The main goal is to develop a model that surpasses the limitations of traditional methods, providing more precise and efficient estimates. A methodology involving the design, training, and validation of a neural network, using experimental data for model adjustment, was employed. The findings indicate a significant improvement in the precision of thermodynamic equilibrium estimations compared to conventional approaches. The conclusions highlight the feasibility of artificial neural networks as an advanced tool for prediction in chemical engineering, offering valuable implications for the design and optimization of industrial processes. This study contributes to the advancement of knowledge in the modeling of thermodynamic processes and underscores the importance of integrating artificial intelligence technologies into solving complex engineering problems.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).