Un método proximal continuo para minimizar funciones cuasi-convexas
Descripción del Articulo
Estudia la viabilidad de la trayectoria en el octante positivo y analiza su comportamiento asintótico donde obtenemos la convergencia global de la trayectoria para un punto óptimo cuando f es convexa. Además, extiende los resultados de convergencia del caso convexo para demostrar que en el caso cuas...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2009 |
Institución: | Universidad Nacional del Callao |
Repositorio: | UNAC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.unac.edu.pe:20.500.12952/126 |
Enlace del recurso: | https://hdl.handle.net/20.500.12952/126 |
Nivel de acceso: | acceso abierto |
Materia: | Lotka-Volterra Dynamical System Proximal method continuous Asymptotic convergence Mathematical economics Sistema Dinámico Lotka-Volterra Método proximal continuo Convergencia asintótica Economía matemática |
Sumario: | Estudia la viabilidad de la trayectoria en el octante positivo y analiza su comportamiento asintótico donde obtenemos la convergencia global de la trayectoria para un punto óptimo cuando f es convexa. Además, extiende los resultados de convergencia del caso convexo para demostrar que en el caso cuasi-convexo la trayectoria converge a un punto candidato a solución. Estos resultados son útiles en las aplicaciones de la matemática a la economía, por ejemplo las funciones de costo, producción y utilidad, que caracterizan al problema de decisión del consumidor, suelen ser convexas o cuasi-convexas y el conjunto de decisión del consumidor se encuentra generalmente en el octante no negativo Rn+. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).