A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU

Descripción del Articulo

THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICO...

Descripción completa

Detalles Bibliográficos
Autores: BADILLO-RIVERA, EDWIN, OLCESE, MANUEL, SANTIAGO, RAMIRO, POMA, TEÓFILO, MUÑOZ, NEFTALÍ, ROJAS-LEÓN, CARLOS, CHÁVEZ, TEODOSIO, EYZAGUIRRE, LUZ, RODRÍGUEZ, CÉSAR, OYANGUREN, FERNANDO
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/9820
Enlace del recurso:https://hdl.handle.net/20.500.12952/9820
Nivel de acceso:acceso abierto
Materia:MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE
https://purl.org/pe-repo/ocde/ford#2.00.00
id UNAC_97fcf5e667860422022c0be829ed2a87
oai_identifier_str oai:repositorio.unac.edu.pe:20.500.12952/9820
network_acronym_str UNAC
network_name_str UNAC-Institucional
repository_id_str 2593
spelling BADILLO-RIVERA, EDWINOLCESE, MANUELSANTIAGO, RAMIROPOMA, TEÓFILOMUÑOZ, NEFTALÍROJAS-LEÓN, CARLOSCHÁVEZ, TEODOSIOEYZAGUIRRE, LUZRODRÍGUEZ, CÉSAROYANGUREN, FERNANDO2025-02-28T20:22:48Z2025-02-28T20:22:48Z202420763263https://hdl.handle.net/20.500.12952/982010.3390/geosciences14060168THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICOLLINEARITY AMONG SOME OF THEM, WHICH LED TO DIMENSIONALITY REDUCTION THROUGH A PRINCIPAL COMPONENT ANALYSIS (PCA). SIX SUSCEPTIBILITY MODELS WERE GENERATED USING WEIGHTS OF EVIDENCE, LOGISTIC REGRESSION, MULTILAYER PERCEPTRON, SUPPORT VECTOR MACHINE, RANDOM FOREST, AND NAIVE BAYES METHODS TO PRODUCE QUANTITATIVE SUSCEPTIBILITY MAPS AND ASSESS THE HAZARD ASSOCIATED WITH TWO SCENARIOS: THE FIRST BEING EL NIÑO PHENOMENON AND THE SECOND BEING AN EARTHQUAKE EXCEEDING 8.8 MW. THE MAIN FINDINGS INDICATE THAT MACHINE LEARNING MODELS EXHIBIT EXCELLENT PREDICTIVE PERFORMANCE FOR THE PRESENCE AND ABSENCE OF MASS MOVEMENT EVENTS, AS ALL MODELS SURPASSED AN AUC VALUE OF >0.9, WITH THE RANDOM FOREST MODEL STANDING OUT. IN TERMS OF HAZARD LEVELS, IN THE EVENT OF AN EL NIÑO PHENOMENON OR AN EARTHQUAKE EXCEEDING 8.8 MW, APPROXIMATELY 40% AND 35% RESPECTIVELY, OF THE NLC AREA WOULD BE EXPOSED TO THE HIGHEST HAZARD LEVELS. THE IMPORTANCE OF INTEGRATING METHODOLOGIES IN MASS MOVEMENT SUSCEPTIBILITY MODELS IS ALSO EMPHASIZED; THESE METHODOLOGIES INCLUDE THE CORRELATION ANALYSIS, MULTICOLLINEARITY ASSESSMENT, DIMENSIONALITY REDUCTION OF VARIABLES, AND COUPLING STATISTICAL MODELS WITH MACHINE LEARNING MODELS TO IMPROVE THE PREDICTIVE ACCURACY OF MACHINE LEARNING MODELS. THE FINDINGS OF THIS RESEARCH ARE EXPECTED TO SERVE AS A SUPPORTIVE TOOL FOR LAND MANAGERS IN FORMULATING EFFECTIVE DISASTER PREVENTION AND RISK REDUCTION STRATEGIES. © 2024 BY THE AUTHORS.application/pdfspaGEOSCIENCES (SWITZERLAND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCEhttps://purl.org/pe-repo/ocde/ford#2.00.00A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERUinfo:eu-repo/semantics/articlereponame:UNAC-Institucionalinstname:Universidad Nacional del Callaoinstacron:UNAC20.500.12952/9820oai:repositorio.unac.edu.pe:20.500.12952/98202025-02-28 15:22:48.758https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unac.edu.peRepositorio de la Universidad Nacional del Callaodspace-help@myu.edu
dc.title.es_PE.fl_str_mv A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
title A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
spellingShingle A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
BADILLO-RIVERA, EDWIN
MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
title_full A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
title_fullStr A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
title_full_unstemmed A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
title_sort A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
author BADILLO-RIVERA, EDWIN
author_facet BADILLO-RIVERA, EDWIN
OLCESE, MANUEL
SANTIAGO, RAMIRO
POMA, TEÓFILO
MUÑOZ, NEFTALÍ
ROJAS-LEÓN, CARLOS
CHÁVEZ, TEODOSIO
EYZAGUIRRE, LUZ
RODRÍGUEZ, CÉSAR
OYANGUREN, FERNANDO
author_role author
author2 OLCESE, MANUEL
SANTIAGO, RAMIRO
POMA, TEÓFILO
MUÑOZ, NEFTALÍ
ROJAS-LEÓN, CARLOS
CHÁVEZ, TEODOSIO
EYZAGUIRRE, LUZ
RODRÍGUEZ, CÉSAR
OYANGUREN, FERNANDO
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv BADILLO-RIVERA, EDWIN
OLCESE, MANUEL
SANTIAGO, RAMIRO
POMA, TEÓFILO
MUÑOZ, NEFTALÍ
ROJAS-LEÓN, CARLOS
CHÁVEZ, TEODOSIO
EYZAGUIRRE, LUZ
RODRÍGUEZ, CÉSAR
OYANGUREN, FERNANDO
dc.subject.es_PE.fl_str_mv MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE
topic MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICOLLINEARITY AMONG SOME OF THEM, WHICH LED TO DIMENSIONALITY REDUCTION THROUGH A PRINCIPAL COMPONENT ANALYSIS (PCA). SIX SUSCEPTIBILITY MODELS WERE GENERATED USING WEIGHTS OF EVIDENCE, LOGISTIC REGRESSION, MULTILAYER PERCEPTRON, SUPPORT VECTOR MACHINE, RANDOM FOREST, AND NAIVE BAYES METHODS TO PRODUCE QUANTITATIVE SUSCEPTIBILITY MAPS AND ASSESS THE HAZARD ASSOCIATED WITH TWO SCENARIOS: THE FIRST BEING EL NIÑO PHENOMENON AND THE SECOND BEING AN EARTHQUAKE EXCEEDING 8.8 MW. THE MAIN FINDINGS INDICATE THAT MACHINE LEARNING MODELS EXHIBIT EXCELLENT PREDICTIVE PERFORMANCE FOR THE PRESENCE AND ABSENCE OF MASS MOVEMENT EVENTS, AS ALL MODELS SURPASSED AN AUC VALUE OF >0.9, WITH THE RANDOM FOREST MODEL STANDING OUT. IN TERMS OF HAZARD LEVELS, IN THE EVENT OF AN EL NIÑO PHENOMENON OR AN EARTHQUAKE EXCEEDING 8.8 MW, APPROXIMATELY 40% AND 35% RESPECTIVELY, OF THE NLC AREA WOULD BE EXPOSED TO THE HIGHEST HAZARD LEVELS. THE IMPORTANCE OF INTEGRATING METHODOLOGIES IN MASS MOVEMENT SUSCEPTIBILITY MODELS IS ALSO EMPHASIZED; THESE METHODOLOGIES INCLUDE THE CORRELATION ANALYSIS, MULTICOLLINEARITY ASSESSMENT, DIMENSIONALITY REDUCTION OF VARIABLES, AND COUPLING STATISTICAL MODELS WITH MACHINE LEARNING MODELS TO IMPROVE THE PREDICTIVE ACCURACY OF MACHINE LEARNING MODELS. THE FINDINGS OF THIS RESEARCH ARE EXPECTED TO SERVE AS A SUPPORTIVE TOOL FOR LAND MANAGERS IN FORMULATING EFFECTIVE DISASTER PREVENTION AND RISK REDUCTION STRATEGIES. © 2024 BY THE AUTHORS.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-02-28T20:22:48Z
dc.date.available.none.fl_str_mv 2025-02-28T20:22:48Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 20763263
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12952/9820
dc.identifier.doi.none.fl_str_mv 10.3390/geosciences14060168
identifier_str_mv 20763263
10.3390/geosciences14060168
url https://hdl.handle.net/20.500.12952/9820
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv GEOSCIENCES (SWITZERLAND)
publisher.none.fl_str_mv GEOSCIENCES (SWITZERLAND)
dc.source.none.fl_str_mv reponame:UNAC-Institucional
instname:Universidad Nacional del Callao
instacron:UNAC
instname_str Universidad Nacional del Callao
instacron_str UNAC
institution UNAC
reponame_str UNAC-Institucional
collection UNAC-Institucional
repository.name.fl_str_mv Repositorio de la Universidad Nacional del Callao
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1846066462499799040
score 13.0768795
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).