A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU
Descripción del Articulo
THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICO...
| Autores: | , , , , , , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Nacional del Callao |
| Repositorio: | UNAC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.unac.edu.pe:20.500.12952/9820 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12952/9820 |
| Nivel de acceso: | acceso abierto |
| Materia: | MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE https://purl.org/pe-repo/ocde/ford#2.00.00 |
| id |
UNAC_97fcf5e667860422022c0be829ed2a87 |
|---|---|
| oai_identifier_str |
oai:repositorio.unac.edu.pe:20.500.12952/9820 |
| network_acronym_str |
UNAC |
| network_name_str |
UNAC-Institucional |
| repository_id_str |
2593 |
| spelling |
BADILLO-RIVERA, EDWINOLCESE, MANUELSANTIAGO, RAMIROPOMA, TEÓFILOMUÑOZ, NEFTALÍROJAS-LEÓN, CARLOSCHÁVEZ, TEODOSIOEYZAGUIRRE, LUZRODRÍGUEZ, CÉSAROYANGUREN, FERNANDO2025-02-28T20:22:48Z2025-02-28T20:22:48Z202420763263https://hdl.handle.net/20.500.12952/982010.3390/geosciences14060168THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICOLLINEARITY AMONG SOME OF THEM, WHICH LED TO DIMENSIONALITY REDUCTION THROUGH A PRINCIPAL COMPONENT ANALYSIS (PCA). SIX SUSCEPTIBILITY MODELS WERE GENERATED USING WEIGHTS OF EVIDENCE, LOGISTIC REGRESSION, MULTILAYER PERCEPTRON, SUPPORT VECTOR MACHINE, RANDOM FOREST, AND NAIVE BAYES METHODS TO PRODUCE QUANTITATIVE SUSCEPTIBILITY MAPS AND ASSESS THE HAZARD ASSOCIATED WITH TWO SCENARIOS: THE FIRST BEING EL NIÑO PHENOMENON AND THE SECOND BEING AN EARTHQUAKE EXCEEDING 8.8 MW. THE MAIN FINDINGS INDICATE THAT MACHINE LEARNING MODELS EXHIBIT EXCELLENT PREDICTIVE PERFORMANCE FOR THE PRESENCE AND ABSENCE OF MASS MOVEMENT EVENTS, AS ALL MODELS SURPASSED AN AUC VALUE OF >0.9, WITH THE RANDOM FOREST MODEL STANDING OUT. IN TERMS OF HAZARD LEVELS, IN THE EVENT OF AN EL NIÑO PHENOMENON OR AN EARTHQUAKE EXCEEDING 8.8 MW, APPROXIMATELY 40% AND 35% RESPECTIVELY, OF THE NLC AREA WOULD BE EXPOSED TO THE HIGHEST HAZARD LEVELS. THE IMPORTANCE OF INTEGRATING METHODOLOGIES IN MASS MOVEMENT SUSCEPTIBILITY MODELS IS ALSO EMPHASIZED; THESE METHODOLOGIES INCLUDE THE CORRELATION ANALYSIS, MULTICOLLINEARITY ASSESSMENT, DIMENSIONALITY REDUCTION OF VARIABLES, AND COUPLING STATISTICAL MODELS WITH MACHINE LEARNING MODELS TO IMPROVE THE PREDICTIVE ACCURACY OF MACHINE LEARNING MODELS. THE FINDINGS OF THIS RESEARCH ARE EXPECTED TO SERVE AS A SUPPORTIVE TOOL FOR LAND MANAGERS IN FORMULATING EFFECTIVE DISASTER PREVENTION AND RISK REDUCTION STRATEGIES. © 2024 BY THE AUTHORS.application/pdfspaGEOSCIENCES (SWITZERLAND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCEhttps://purl.org/pe-repo/ocde/ford#2.00.00A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERUinfo:eu-repo/semantics/articlereponame:UNAC-Institucionalinstname:Universidad Nacional del Callaoinstacron:UNAC20.500.12952/9820oai:repositorio.unac.edu.pe:20.500.12952/98202025-02-28 15:22:48.758https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unac.edu.peRepositorio de la Universidad Nacional del Callaodspace-help@myu.edu |
| dc.title.es_PE.fl_str_mv |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| title |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| spellingShingle |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU BADILLO-RIVERA, EDWIN MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE https://purl.org/pe-repo/ocde/ford#2.00.00 |
| title_short |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| title_full |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| title_fullStr |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| title_full_unstemmed |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| title_sort |
A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU |
| author |
BADILLO-RIVERA, EDWIN |
| author_facet |
BADILLO-RIVERA, EDWIN OLCESE, MANUEL SANTIAGO, RAMIRO POMA, TEÓFILO MUÑOZ, NEFTALÍ ROJAS-LEÓN, CARLOS CHÁVEZ, TEODOSIO EYZAGUIRRE, LUZ RODRÍGUEZ, CÉSAR OYANGUREN, FERNANDO |
| author_role |
author |
| author2 |
OLCESE, MANUEL SANTIAGO, RAMIRO POMA, TEÓFILO MUÑOZ, NEFTALÍ ROJAS-LEÓN, CARLOS CHÁVEZ, TEODOSIO EYZAGUIRRE, LUZ RODRÍGUEZ, CÉSAR OYANGUREN, FERNANDO |
| author2_role |
author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
BADILLO-RIVERA, EDWIN OLCESE, MANUEL SANTIAGO, RAMIRO POMA, TEÓFILO MUÑOZ, NEFTALÍ ROJAS-LEÓN, CARLOS CHÁVEZ, TEODOSIO EYZAGUIRRE, LUZ RODRÍGUEZ, CÉSAR OYANGUREN, FERNANDO |
| dc.subject.es_PE.fl_str_mv |
MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE |
| topic |
MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE https://purl.org/pe-repo/ocde/ford#2.00.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
| description |
THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICOLLINEARITY AMONG SOME OF THEM, WHICH LED TO DIMENSIONALITY REDUCTION THROUGH A PRINCIPAL COMPONENT ANALYSIS (PCA). SIX SUSCEPTIBILITY MODELS WERE GENERATED USING WEIGHTS OF EVIDENCE, LOGISTIC REGRESSION, MULTILAYER PERCEPTRON, SUPPORT VECTOR MACHINE, RANDOM FOREST, AND NAIVE BAYES METHODS TO PRODUCE QUANTITATIVE SUSCEPTIBILITY MAPS AND ASSESS THE HAZARD ASSOCIATED WITH TWO SCENARIOS: THE FIRST BEING EL NIÑO PHENOMENON AND THE SECOND BEING AN EARTHQUAKE EXCEEDING 8.8 MW. THE MAIN FINDINGS INDICATE THAT MACHINE LEARNING MODELS EXHIBIT EXCELLENT PREDICTIVE PERFORMANCE FOR THE PRESENCE AND ABSENCE OF MASS MOVEMENT EVENTS, AS ALL MODELS SURPASSED AN AUC VALUE OF >0.9, WITH THE RANDOM FOREST MODEL STANDING OUT. IN TERMS OF HAZARD LEVELS, IN THE EVENT OF AN EL NIÑO PHENOMENON OR AN EARTHQUAKE EXCEEDING 8.8 MW, APPROXIMATELY 40% AND 35% RESPECTIVELY, OF THE NLC AREA WOULD BE EXPOSED TO THE HIGHEST HAZARD LEVELS. THE IMPORTANCE OF INTEGRATING METHODOLOGIES IN MASS MOVEMENT SUSCEPTIBILITY MODELS IS ALSO EMPHASIZED; THESE METHODOLOGIES INCLUDE THE CORRELATION ANALYSIS, MULTICOLLINEARITY ASSESSMENT, DIMENSIONALITY REDUCTION OF VARIABLES, AND COUPLING STATISTICAL MODELS WITH MACHINE LEARNING MODELS TO IMPROVE THE PREDICTIVE ACCURACY OF MACHINE LEARNING MODELS. THE FINDINGS OF THIS RESEARCH ARE EXPECTED TO SERVE AS A SUPPORTIVE TOOL FOR LAND MANAGERS IN FORMULATING EFFECTIVE DISASTER PREVENTION AND RISK REDUCTION STRATEGIES. © 2024 BY THE AUTHORS. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-02-28T20:22:48Z |
| dc.date.available.none.fl_str_mv |
2025-02-28T20:22:48Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
20763263 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12952/9820 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/geosciences14060168 |
| identifier_str_mv |
20763263 10.3390/geosciences14060168 |
| url |
https://hdl.handle.net/20.500.12952/9820 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
GEOSCIENCES (SWITZERLAND) |
| publisher.none.fl_str_mv |
GEOSCIENCES (SWITZERLAND) |
| dc.source.none.fl_str_mv |
reponame:UNAC-Institucional instname:Universidad Nacional del Callao instacron:UNAC |
| instname_str |
Universidad Nacional del Callao |
| instacron_str |
UNAC |
| institution |
UNAC |
| reponame_str |
UNAC-Institucional |
| collection |
UNAC-Institucional |
| repository.name.fl_str_mv |
Repositorio de la Universidad Nacional del Callao |
| repository.mail.fl_str_mv |
dspace-help@myu.edu |
| _version_ |
1846066462499799040 |
| score |
13.0768795 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).