A COMPARATIVE STUDY OF SUSCEPTIBILITY AND HAZARD FOR MASS MOVEMENTS APPLYING QUANTITATIVE MACHINE LEARNING TECHNIQUES—CASE STUDY: NORTHERN LIMA COMMONWEALTH, PERU

Descripción del Articulo

THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICO...

Descripción completa

Detalles Bibliográficos
Autores: BADILLO-RIVERA, EDWIN, OLCESE, MANUEL, SANTIAGO, RAMIRO, POMA, TEÓFILO, MUÑOZ, NEFTALÍ, ROJAS-LEÓN, CARLOS, CHÁVEZ, TEODOSIO, EYZAGUIRRE, LUZ, RODRÍGUEZ, CÉSAR, OYANGUREN, FERNANDO
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/9820
Enlace del recurso:https://hdl.handle.net/20.500.12952/9820
Nivel de acceso:acceso abierto
Materia:MACHINE LEARNING, MASS MOVEMENT, PRINCIPAL COMPONENT ANALYSIS, WEIGHT EVIDENCE
https://purl.org/pe-repo/ocde/ford#2.00.00
Descripción
Sumario:THIS STUDY ADDRESSES THE IMPORTANCE OF CONDUCTING MASS MOVEMENT SUSCEPTIBILITY MAPPING AND HAZARD ASSESSMENT USING QUANTITATIVE TECHNIQUES, INCLUDING MACHINE LEARNING, IN THE NORTHERN LIMA COMMONWEALTH (NLC). A PREVIOUS EXPLORATION OF THE TOPOGRAPHIC VARIABLES REVEALED A HIGH CORRELATION AND MULTICOLLINEARITY AMONG SOME OF THEM, WHICH LED TO DIMENSIONALITY REDUCTION THROUGH A PRINCIPAL COMPONENT ANALYSIS (PCA). SIX SUSCEPTIBILITY MODELS WERE GENERATED USING WEIGHTS OF EVIDENCE, LOGISTIC REGRESSION, MULTILAYER PERCEPTRON, SUPPORT VECTOR MACHINE, RANDOM FOREST, AND NAIVE BAYES METHODS TO PRODUCE QUANTITATIVE SUSCEPTIBILITY MAPS AND ASSESS THE HAZARD ASSOCIATED WITH TWO SCENARIOS: THE FIRST BEING EL NIÑO PHENOMENON AND THE SECOND BEING AN EARTHQUAKE EXCEEDING 8.8 MW. THE MAIN FINDINGS INDICATE THAT MACHINE LEARNING MODELS EXHIBIT EXCELLENT PREDICTIVE PERFORMANCE FOR THE PRESENCE AND ABSENCE OF MASS MOVEMENT EVENTS, AS ALL MODELS SURPASSED AN AUC VALUE OF >0.9, WITH THE RANDOM FOREST MODEL STANDING OUT. IN TERMS OF HAZARD LEVELS, IN THE EVENT OF AN EL NIÑO PHENOMENON OR AN EARTHQUAKE EXCEEDING 8.8 MW, APPROXIMATELY 40% AND 35% RESPECTIVELY, OF THE NLC AREA WOULD BE EXPOSED TO THE HIGHEST HAZARD LEVELS. THE IMPORTANCE OF INTEGRATING METHODOLOGIES IN MASS MOVEMENT SUSCEPTIBILITY MODELS IS ALSO EMPHASIZED; THESE METHODOLOGIES INCLUDE THE CORRELATION ANALYSIS, MULTICOLLINEARITY ASSESSMENT, DIMENSIONALITY REDUCTION OF VARIABLES, AND COUPLING STATISTICAL MODELS WITH MACHINE LEARNING MODELS TO IMPROVE THE PREDICTIVE ACCURACY OF MACHINE LEARNING MODELS. THE FINDINGS OF THIS RESEARCH ARE EXPECTED TO SERVE AS A SUPPORTIVE TOOL FOR LAND MANAGERS IN FORMULATING EFFECTIVE DISASTER PREVENTION AND RISK REDUCTION STRATEGIES. © 2024 BY THE AUTHORS.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).