Estado del arte del aprendizaje automático relacionado con la lógica difusa

Descripción del Articulo

La Inteligencia Artificial de relevante importancia actual, usa las teorías del Aprendizaje Automático y la Lógica Difusa. El aprendizaje Automático propone algoritmos para que las máquinas aprendan. La Lógica Difusa es una lógica polivalente que trata la incertidumbre. Ambas disciplinas han experim...

Descripción completa

Detalles Bibliográficos
Autor: Ramírez Veliz, Juan Francisco
Formato: informe técnico
Fecha de Publicación:2019
Institución:Universidad Nacional del Callao
Repositorio:UNAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unac.edu.pe:20.500.12952/5580
Enlace del recurso:https://hdl.handle.net/20.500.12952/5580
Nivel de acceso:acceso abierto
Materia:Machine learning
Lógica Difusa
Revisión Sistemática.
Descripción
Sumario:La Inteligencia Artificial de relevante importancia actual, usa las teorías del Aprendizaje Automático y la Lógica Difusa. El aprendizaje Automático propone algoritmos para que las máquinas aprendan. La Lógica Difusa es una lógica polivalente que trata la incertidumbre. Ambas disciplinas han experimentado sendos desarrollos y existen ya tecnologías en la industria basadas en estos temas. El objetivo del presente estudio consistió en establecer el estado del arte de los algoritmos del Aprendizaje Automático relacionados con las propuestas difusas, haciendo un estudio bibliométrico de las investigaciones publicadas en las bases de datos bibliográficas y aplicando la metodología Revisión Sistemática. Como resultados se obtuvo datos que luego de analizarlos se concluye que hay preferencia por el uso de los algoritmos basados en Redes Neuronales, Redes Bayesianas, Arboles de decisión, algoritmos de clasificación, en ese orden y por el lado de la Lógica Difusa de prefiere usar las propuestas de los Conjuntos Difusos, funciones de membresía, Inferencia de Mandani, Inferencia de Sugeno también en ese orden. Los algoritmos de Redes Bayesianas son los que mas usan propuestas difusas, le sigue la Redes Neuronales y en menor proporción los algoritmos de Clasificación. Se recomienda volver a aplicar esta propuesta en un tiempo futuro para determinar el incremento en el uso de estas teorías. También se recomienda hacer un tratamiento axiomático formal de estos algoritmos para lograr herramientas software que automaticen su uso.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).