On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets

Descripción del Articulo

Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, ther...

Descripción completa

Detalles Bibliográficos
Autores: Ocsa, Alexander, Huillca, Jose Luis, López Del Alamo, Cristian
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/30
Enlace del recurso:http://repositorio.ulasalle.edu.pe/handle/20.500.12953/30
https://doi.org/10.1007/978-3-319-75193-1
Nivel de acceso:acceso restringido
Materia:Research Subject Categories::TECHNOLOGY
Descripción
Sumario:Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters. Aiming to overcome these issues, we propose a new method for scalable similarity search, i.e., Deep frActal based Hashing (DAsH), by computing the best data-parameters values for optimal sub-space projection exploring the correlations among CNN features attributes using fractal theory. Moreover, inspired by recent advances in CNNs, we use not only activations of lower layers which are more general-purpose but also previous knowledge of the semantic data on the latest CNN layer to improve the search accuracy. Thus, our method produces a better representation of the data space with a less computational cost for a better accuracy. This significant gain in speed and accuracy allows us to evaluate the framework on a large, realistic, and challenging set of datasets.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).