Modelo de reconocimiento automático y detección de matrículas basado en OpenCV y Machine Learning

Descripción del Articulo

El reconocimiento automático de matrículas (ALPR) es una tarea importante con muchas aplicaciones en los sistemas inteligentes de transporte y vigilancia. Muchos de los sistemas de reconocimiento de matrículas automatizados existentes, solo funcionan en un entorno controlado donde las imágenes se ca...

Descripción completa

Detalles Bibliográficos
Autor: Ccoto Huallpa, Elias
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/6252
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/6252
Nivel de acceso:acceso abierto
Materia:KNN
SVM
Tesseract
OpenCV
Machine Learning
Hiperpárametros
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El reconocimiento automático de matrículas (ALPR) es una tarea importante con muchas aplicaciones en los sistemas inteligentes de transporte y vigilancia. Muchos de los sistemas de reconocimiento de matrículas automatizados existentes, solo funcionan en un entorno controlado donde las imágenes se capturan desde un ángulo recto con buena iluminación y claridad. Esta investigación presenta un modelo de procesamiento de imágenes para la detección y el reconocimiento de matrículas en Perú, que se puede manejar matrículas de fuentes ruidosas, con poca iluminación, en ángulo cruzado y no estándar. Este trabajo emplea varias técnicas de procesamiento de imágenes como, transformación morfológica, suavizado gaussiano y umbral gaussiano en la etapa de procesamiento. Una vez realizado el procesamiento de imagen se usa 3 algoritmos diferentes K-NN, SVM y Tesseract para el reconocimiento de caracteres, cada algoritmo con sus respectivos hiperparámetros para su optimización. Las imágenes fueron separadas en dos grupos, la primera en 80 imágenes tomadas de diferentes ángulos y distancia donde se obtuvo SVM con el mejor mode oiiiiiiiiiiiiiiiiiiiiioiolo con un accuracy de 86% y en el segundo grupo con imágenes tomadas de un Angulo recto y distancia similar, en este grupo obtuvo un accuracy de 95.5%
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).