Modelo de reconocimiento automático y detección de matrículas basado en OpenCV y Machine Learning
Descripción del Articulo
El reconocimiento automático de matrículas (ALPR) es una tarea importante con muchas aplicaciones en los sistemas inteligentes de transporte y vigilancia. Muchos de los sistemas de reconocimiento de matrículas automatizados existentes, solo funcionan en un entorno controlado donde las imágenes se ca...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana Unión |
Repositorio: | UPEU-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.upeu.edu.pe:20.500.12840/6252 |
Enlace del recurso: | http://repositorio.upeu.edu.pe/handle/20.500.12840/6252 |
Nivel de acceso: | acceso abierto |
Materia: | KNN SVM Tesseract OpenCV Machine Learning Hiperpárametros http://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | El reconocimiento automático de matrículas (ALPR) es una tarea importante con muchas aplicaciones en los sistemas inteligentes de transporte y vigilancia. Muchos de los sistemas de reconocimiento de matrículas automatizados existentes, solo funcionan en un entorno controlado donde las imágenes se capturan desde un ángulo recto con buena iluminación y claridad. Esta investigación presenta un modelo de procesamiento de imágenes para la detección y el reconocimiento de matrículas en Perú, que se puede manejar matrículas de fuentes ruidosas, con poca iluminación, en ángulo cruzado y no estándar. Este trabajo emplea varias técnicas de procesamiento de imágenes como, transformación morfológica, suavizado gaussiano y umbral gaussiano en la etapa de procesamiento. Una vez realizado el procesamiento de imagen se usa 3 algoritmos diferentes K-NN, SVM y Tesseract para el reconocimiento de caracteres, cada algoritmo con sus respectivos hiperparámetros para su optimización. Las imágenes fueron separadas en dos grupos, la primera en 80 imágenes tomadas de diferentes ángulos y distancia donde se obtuvo SVM con el mejor mode oiiiiiiiiiiiiiiiiiiiiioiolo con un accuracy de 86% y en el segundo grupo con imágenes tomadas de un Angulo recto y distancia similar, en este grupo obtuvo un accuracy de 95.5% |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).