Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial

Descripción del Articulo

In this study, we propose a new hybrid method based on artificial neural networks to forecast daily extreme events of PM2.5 pollution concentration. The hybrid method combines self-organizing maps to identify temporal patterns of excessive daily pollution found at different monitoring stations, with...

Descripción completa

Detalles Bibliográficos
Autores: Guerra Bendezu, Carlos Andres, Romani Franco, Vivian Isabel
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/7716
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/7716
Nivel de acceso:acceso embargado
Materia:Air pollution
Hybrid methodology
Artificial Neural Networks
Time series Forecasting
http://purl.org/pe-repo/ocde/ford#1.01.03
id UEPU_8332d7457a59c0f54a7df3cc5f2b595d
oai_identifier_str oai:repositorio.upeu.edu.pe:20.500.12840/7716
network_acronym_str UEPU
network_name_str UPEU-Tesis
repository_id_str 4840
dc.title.none.fl_str_mv Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
title Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
spellingShingle Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
Guerra Bendezu, Carlos Andres
Air pollution
Hybrid methodology
Artificial Neural Networks
Time series Forecasting
http://purl.org/pe-repo/ocde/ford#1.01.03
title_short Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
title_full Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
title_fullStr Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
title_full_unstemmed Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
title_sort Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificial
author Guerra Bendezu, Carlos Andres
author_facet Guerra Bendezu, Carlos Andres
Romani Franco, Vivian Isabel
author_role author
author2 Romani Franco, Vivian Isabel
author2_role author
dc.contributor.advisor.fl_str_mv Lopez Gonzales, Javier Linkolk
dc.contributor.author.fl_str_mv Guerra Bendezu, Carlos Andres
Romani Franco, Vivian Isabel
dc.subject.none.fl_str_mv Air pollution
Hybrid methodology
Artificial Neural Networks
Time series Forecasting
topic Air pollution
Hybrid methodology
Artificial Neural Networks
Time series Forecasting
http://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.03
description In this study, we propose a new hybrid method based on artificial neural networks to forecast daily extreme events of PM2.5 pollution concentration. The hybrid method combines self-organizing maps to identify temporal patterns of excessive daily pollution found at different monitoring stations, with a set of multilayer perceptron to forecast extreme values of PM2.5 for each cluster. The proposed model was applied to analyze five-year pollution data obtained from nine weather stations in the metropolitan area of Santiago, Chile. Simulation results show that the hybrid method improves the performance metrics when forecasting daily extreme values of PM2.5.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-14T18:12:09Z
dc.date.available.none.fl_str_mv 2024-07-14T18:12:09Z
dc.date.embargoEnd.none.fl_str_mv 2026-04-15
dc.date.issued.fl_str_mv 2024-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.upeu.edu.pe/handle/20.500.12840/7716
url http://repositorio.upeu.edu.pe/handle/20.500.12840/7716
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Peruana Unión
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Peruana Unión
dc.source.none.fl_str_mv reponame:UPEU-Tesis
instname:Universidad Peruana Unión
instacron:UPEU
instname_str Universidad Peruana Unión
instacron_str UPEU
institution UPEU
reponame_str UPEU-Tesis
collection UPEU-Tesis
bitstream.url.fl_str_mv https://repositorio.upeu.edu.pe/bitstreams/69e7bea9-7457-4b62-b18e-95bdcec13ba1/download
https://repositorio.upeu.edu.pe/bitstreams/9006ff30-6738-4c74-bc02-5fe164e0e392/download
https://repositorio.upeu.edu.pe/bitstreams/e8ab91a4-9864-47c0-80a0-cbd259c732d0/download
https://repositorio.upeu.edu.pe/bitstreams/28634fb6-4ed9-4619-8bc1-e8fb89ec043d/download
bitstream.checksum.fl_str_mv 2c0cc42e6aed615191aef36771d370e9
fe4521b75946e2ab59d57244f7107a94
8fdd437cabbf13bc2332e8a94fe60cd9
bb9bdc0b3349e4284e09149f943790b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace 7
repository.mail.fl_str_mv repositorio-help@upeu.edu.pe
_version_ 1835737654386229248
spelling Lopez Gonzales, Javier LinkolkGuerra Bendezu, Carlos AndresRomani Franco, Vivian Isabel2024-07-14T18:12:09Z2024-07-14T18:12:09Z2024-04-152026-04-15http://repositorio.upeu.edu.pe/handle/20.500.12840/7716In this study, we propose a new hybrid method based on artificial neural networks to forecast daily extreme events of PM2.5 pollution concentration. The hybrid method combines self-organizing maps to identify temporal patterns of excessive daily pollution found at different monitoring stations, with a set of multilayer perceptron to forecast extreme values of PM2.5 for each cluster. The proposed model was applied to analyze five-year pollution data obtained from nine weather stations in the metropolitan area of Santiago, Chile. Simulation results show that the hybrid method improves the performance metrics when forecasting daily extreme values of PM2.5.application/pdfspaUniversidad Peruana UniónPEinfo:eu-repo/semantics/embargoedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Air pollutionHybrid methodologyArtificial Neural NetworksTime series Forecastinghttp://purl.org/pe-repo/ocde/ford#1.01.03Enfoque predictivo para la concentración de contaminante del aire basado en un modelo de red neuronal artificialinfo:eu-repo/semantics/bachelorThesisreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUSUNEDUSegunda Especialidad en Estadística Aplicada para InvestigaciónUniversidad Peruana Unión. Unidad de Posgrado de Ingeniería y ArquitecturaSegunda Especialidad Profesional de Ingeniería: Estadística para Investigación46071566https://orcid.org/0000-0003-0847-05520814492909726163542039Abanto Ramirez, Carlos Danielhttp://purl.org/pe-repo/renati/nivel#tituloSegundaEspecialidadhttp://purl.org/pe-repo/renati/type#tesisORIGINALVivian_Tesis_Esp_24.pdfVivian_Tesis_Esp_24.pdfapplication/pdf482416https://repositorio.upeu.edu.pe/bitstreams/69e7bea9-7457-4b62-b18e-95bdcec13ba1/download2c0cc42e6aed615191aef36771d370e9MD51Autorización.pdfAutorización.pdfapplication/pdf108481https://repositorio.upeu.edu.pe/bitstreams/9006ff30-6738-4c74-bc02-5fe164e0e392/downloadfe4521b75946e2ab59d57244f7107a94MD52Reporte de similitud.pdfReporte de similitud.pdfapplication/pdf2269538https://repositorio.upeu.edu.pe/bitstreams/e8ab91a4-9864-47c0-80a0-cbd259c732d0/download8fdd437cabbf13bc2332e8a94fe60cd9MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/28634fb6-4ed9-4619-8bc1-e8fb89ec043d/downloadbb9bdc0b3349e4284e09149f943790b4MD5420.500.12840/7716oai:repositorio.upeu.edu.pe:20.500.12840/77162024-08-20 18:00:52.517http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.983407
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).