Sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-SPP y la iluminación y la difuminación de OpenCV
Descripción del Articulo
El problema de la investigación fue ¿Cuál fue el efecto del sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-spp y la iluminación y la difuminación de OpenCV? El objetivo de la investigación fue determinar el efecto del sistema de detección de cuchillos y pistolas con los algor...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad Cesar Vallejo |
Repositorio: | UCV-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ucv.edu.pe:20.500.12692/129729 |
Enlace del recurso: | https://hdl.handle.net/20.500.12692/129729 |
Nivel de acceso: | acceso abierto |
Materia: | Deep learning YOLOv3 Detección de objetos Detección cuchillos Detección pistolas https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | El problema de la investigación fue ¿Cuál fue el efecto del sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-spp y la iluminación y la difuminación de OpenCV? El objetivo de la investigación fue determinar el efecto del sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-spp y la iluminación y la difuminación de OpenCV. El diseño de investigación fue preexperimental y la metodología ágil utilizada fue Scrum. La muestra por conveniencia estuvo conformada por 2083 imágenes de cuchillos y 1327 imágenes de pistolas. La sensibilidad del 94.2% fue menor al 100% logrado por Olmos et al. (2017), porque usaron un conjunto de datos guiados por el clasificador VGG-16. La especificad del 89.4% fue menor al 95% logrado por Elsner et al. (2019) porque utilizaron un detector de 2-Pass (2 pasadas) totalmente convolucionada en regiones (R-FCN) con un extractor de características ResNet-101. La precisión del 94.2% de esta investigación fue superior al 44.28% obtenido por Fernandez Carrobles et al. (2019) porque se usó imágenes tratadas con iluminación, difuminación y una capa Spatial Pyramid Pooling (He et al., 2015). La exactitud del 88% fue menor al 97% de Arceda et al. (2016) porque usaron un detector de escenas violentas, un algoritmo de normalización y un detector de rostros. El tiempo promedio de entrenamiento de 2.07 s se mantuvo dentro de los mejores porque se usó una instancia con Intel(R) Xeon(R) CPU @ 2.30GHz, 12.7 GB RAM y Tesla T4 15 GB GPU similar a Nguyen et al. (2020) con Intel (R) Xeon (R) Gold 6152 CPU @ 2.10 GHz, GPU Tesla P100 con el algoritmo YOLOv3. El tiempo promedio de entrenamiento de 26.19 ms fue rápido porque se utilizó YOLOv3-spp, que aparte de usar Darknet53, adiciona una capa llamada Spatial Pyramid Pooling, similar a Nguyen et al. (2020), quienes usaron YOLOv3 con Darknet53. Se recomienda utilizar más algoritmos de aumento de datos como rotación, acercar y alejar, así como aumentar el conjunto de datos de entrenamiento e interactuar con los hiperparámetros. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).