Sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-SPP y la iluminación y la difuminación de OpenCV

Descripción del Articulo

El problema de la investigación fue ¿Cuál fue el efecto del sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-spp y la iluminación y la difuminación de OpenCV? El objetivo de la investigación fue determinar el efecto del sistema de detección de cuchillos y pistolas con los algor...

Descripción completa

Detalles Bibliográficos
Autor: Quito Gonzales, Ernesto Edgar
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Cesar Vallejo
Repositorio:UCV-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucv.edu.pe:20.500.12692/129729
Enlace del recurso:https://hdl.handle.net/20.500.12692/129729
Nivel de acceso:acceso abierto
Materia:Deep learning
YOLOv3
Detección de objetos
Detección cuchillos
Detección pistolas
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El problema de la investigación fue ¿Cuál fue el efecto del sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-spp y la iluminación y la difuminación de OpenCV? El objetivo de la investigación fue determinar el efecto del sistema de detección de cuchillos y pistolas con los algoritmos YOLOv3-spp y la iluminación y la difuminación de OpenCV. El diseño de investigación fue preexperimental y la metodología ágil utilizada fue Scrum. La muestra por conveniencia estuvo conformada por 2083 imágenes de cuchillos y 1327 imágenes de pistolas. La sensibilidad del 94.2% fue menor al 100% logrado por Olmos et al. (2017), porque usaron un conjunto de datos guiados por el clasificador VGG-16. La especificad del 89.4% fue menor al 95% logrado por Elsner et al. (2019) porque utilizaron un detector de 2-Pass (2 pasadas) totalmente convolucionada en regiones (R-FCN) con un extractor de características ResNet-101. La precisión del 94.2% de esta investigación fue superior al 44.28% obtenido por Fernandez Carrobles et al. (2019) porque se usó imágenes tratadas con iluminación, difuminación y una capa Spatial Pyramid Pooling (He et al., 2015). La exactitud del 88% fue menor al 97% de Arceda et al. (2016) porque usaron un detector de escenas violentas, un algoritmo de normalización y un detector de rostros. El tiempo promedio de entrenamiento de 2.07 s se mantuvo dentro de los mejores porque se usó una instancia con Intel(R) Xeon(R) CPU @ 2.30GHz, 12.7 GB RAM y Tesla T4 15 GB GPU similar a Nguyen et al. (2020) con Intel (R) Xeon (R) Gold 6152 CPU @ 2.10 GHz, GPU Tesla P100 con el algoritmo YOLOv3. El tiempo promedio de entrenamiento de 26.19 ms fue rápido porque se utilizó YOLOv3-spp, que aparte de usar Darknet53, adiciona una capa llamada Spatial Pyramid Pooling, similar a Nguyen et al. (2020), quienes usaron YOLOv3 con Darknet53. Se recomienda utilizar más algoritmos de aumento de datos como rotación, acercar y alejar, así como aumentar el conjunto de datos de entrenamiento e interactuar con los hiperparámetros.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).