Machine learning en matlab para mejorar la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco SAC

Descripción del Articulo

La presente investigación tuvo como objetivo desarrollar un modelo predictivo de fallas utilizando machine learning para mejorar la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco S.A.C. ya que la constante alza en los precios para mantener disponible un bus ocasiona que la...

Descripción completa

Detalles Bibliográficos
Autor: Ruiz Meléndez, Roberto
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Cesar Vallejo
Repositorio:UCV-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucv.edu.pe:20.500.12692/86535
Enlace del recurso:https://hdl.handle.net/20.500.12692/86535
Nivel de acceso:acceso abierto
Materia:Transporte urbano
Turismo
Mejora continua
https://purl.org/pe-repo/ocde/ford#2.03.01
Descripción
Sumario:La presente investigación tuvo como objetivo desarrollar un modelo predictivo de fallas utilizando machine learning para mejorar la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco S.A.C. ya que la constante alza en los precios para mantener disponible un bus ocasiona que las empresas de transporte realicen el cambio de los repuestos cuando el daño sea notorio, sin embargo, la falla en ocasiones paraliza el servicio que se realiza. De diseño experimental y tipo aplicada analizó como muestra 7 buses que realizan transporte de personal, asimismo utilizo la metodología CRISP-DM para el desarrollo del modelo predictivo. Mediante el procesamiento del modelo machine learning en Matlab se evidenció una precisión del 82.8% con el algoritmo de árbol de decisiones, obteniendo como resultado de aplicar el modelo predictivo una reducción de 53.65 a 10.26 en el indicador tiempo medio entre fallos (MTBF) y de 786.81 a 11.79 en el indicador tiempo medio de reparación (MTTR). En conclusión, el modelo predictivo de machine learning en Matlab R2019b incrementa la disponibilidad en los buses de la empresa Turismo Nacional Imperial Cusco S.A.C.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).