Machine learning en la gestión de mantenimiento de maquinaria pesada en la empresa MEKATSU EQUIPOS S.R.L.

Descripción del Articulo

La presente investigación tuvo por objetivo general, evaluar la influencia del Machine Learning en la gestión de mantenimiento de maquinaria pesada en la Empresa Mekatsu Equipos S.R.L. Se realizó una investigación de tipo aplicada, de diseño pre experimental, con un enfoque cuantitativo así mismo la...

Descripción completa

Detalles Bibliográficos
Autores: Blas Benites, Ruben Fredy, Diaz Mayta, Enestor
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Cesar Vallejo
Repositorio:UCV-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucv.edu.pe:20.500.12692/77567
Enlace del recurso:https://hdl.handle.net/20.500.12692/77567
Nivel de acceso:acceso abierto
Materia:Maquinaria industrial
Maquinaria - Mantenimiento y reparación
Tractores - Mantenimiento y reparación
https://purl.org/pe-repo/ocde/ford#2.03.01
Descripción
Sumario:La presente investigación tuvo por objetivo general, evaluar la influencia del Machine Learning en la gestión de mantenimiento de maquinaria pesada en la Empresa Mekatsu Equipos S.R.L. Se realizó una investigación de tipo aplicada, de diseño pre experimental, con un enfoque cuantitativo así mismo la población y la muestra del estudio, estuvo constituida por 4 maquinarias pesadas las cuales fueron el cargador frontal, retroexcavadora, tractor oruga y excavadora. Se aplicaron 5 modelos de Machine Learning entre ellas el SVM, Arboles de decisión, vecinos más cercanos, redes bayesianas y redes neuronales. La información recopilada, se procesó haciendo uso del programa Excel, obteniendo como resultados un incremento en el cargador frontal de 24.95% en la disponibilidad y 36,7% en la confiabilidad, con relación a la retroexcavadora se obtuvo un incremento del 25.48% en la disponibilidad y 35,24% en la confiabilidad, también se pudo apreciar con respecto al tractor oruga un incremento del 22.75% en la disponibilidad y 34.79% en la confiabilidad, con relación a la excavadora se obtuvo un incremento de 27.42% en la disponibilidad y 42.46% en la confiabilidad. Finalmente se concluyó que el Machine Learning mejora la gestión de mantenimiento de la maquinaria pesada, ya que contar con una herramienta tecnológica que predice las fallas, generar grandes beneficios a la empresa y así como puede ser aplicado a otros tipos de empresas similares.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).