Quantum exordium for natural language processing: A novel approach to sample on decoders

Descripción del Articulo

The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) ca...

Descripción completa

Detalles Bibliográficos
Autor: Muroya Lei, Stefanie
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16844
Enlace del recurso:https://hdl.handle.net/20.500.12590/16844
Nivel de acceso:acceso abierto
Materia:Quantum Annealing
ISING Model
Sampling
Natural Language Processing
Seq2Seq
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_d352ee5f7c7b3fb5e1f515ac70c956bd
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/16844
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Quantum exordium for natural language processing: A novel approach to sample on decoders
title Quantum exordium for natural language processing: A novel approach to sample on decoders
spellingShingle Quantum exordium for natural language processing: A novel approach to sample on decoders
Muroya Lei, Stefanie
Quantum Annealing
ISING Model
Sampling
Natural Language Processing
Seq2Seq
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Quantum exordium for natural language processing: A novel approach to sample on decoders
title_full Quantum exordium for natural language processing: A novel approach to sample on decoders
title_fullStr Quantum exordium for natural language processing: A novel approach to sample on decoders
title_full_unstemmed Quantum exordium for natural language processing: A novel approach to sample on decoders
title_sort Quantum exordium for natural language processing: A novel approach to sample on decoders
author Muroya Lei, Stefanie
author_facet Muroya Lei, Stefanie
author_role author
dc.contributor.advisor.fl_str_mv Ochoa Luna, Jose Eduardo
dc.contributor.author.fl_str_mv Muroya Lei, Stefanie
dc.subject.es_PE.fl_str_mv Quantum Annealing
ISING Model
Sampling
Natural Language Processing
Seq2Seq
topic Quantum Annealing
ISING Model
Sampling
Natural Language Processing
Seq2Seq
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) can guide the search space of these samplers. The contribution of this work is given by showing an architecture to represent Recurrent Neural Networks (RNN) in a quantum computer to finally develop a quantum sampler. The individual architectures (i.e. summation, multiplication, argmax, and activation functions) achieve optimal accuracies in both simulated and quantum environments. While the results of the overall proposal show that it can either outperform or match greedy approaches. As the very first steps of quantum NLP, these are tested against simple RNN with a synthetic data set of random numbers, and a real quantum computer is utilized. Since ane functions are the basis of most Artificial Intelligence (AI) models, this method can be applied to more complex architectures in the future.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-15T01:23:27Z
dc.date.available.none.fl_str_mv 2021-09-15T01:23:27Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format bachelorThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1073395
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/16844
identifier_str_mv 1073395
url https://hdl.handle.net/20.500.12590/16844
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/437d884f-eade-45f5-94d6-0a4133500524/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/c8bf07ed-86da-4f3a-934c-87f9b9a75809/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ddfdfc4b-d516-44f8-87ec-7fbbbe54667e/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/148304b3-61ad-4ce1-8db8-bb6db58a1af6/download
bitstream.checksum.fl_str_mv 50e701166fe37b0229146e10d93f6866
8a4605be74aa9ea9d79846c1fba20a33
02b2062e5732beb4704f342b2e87a5a5
d841edb6627345edf5af0d0ffdbbf4e5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053057272446976
spelling Ochoa Luna, Jose EduardoMuroya Lei, Stefanie2021-09-15T01:23:27Z2021-09-15T01:23:27Z20211073395https://hdl.handle.net/20.500.12590/16844The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) can guide the search space of these samplers. The contribution of this work is given by showing an architecture to represent Recurrent Neural Networks (RNN) in a quantum computer to finally develop a quantum sampler. The individual architectures (i.e. summation, multiplication, argmax, and activation functions) achieve optimal accuracies in both simulated and quantum environments. While the results of the overall proposal show that it can either outperform or match greedy approaches. As the very first steps of quantum NLP, these are tested against simple RNN with a synthetic data set of random numbers, and a real quantum computer is utilized. Since ane functions are the basis of most Artificial Intelligence (AI) models, this method can be applied to more complex architectures in the future. Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPQuantum AnnealingISING ModelSamplingNatural Language ProcessingSeq2Seqhttps://purl.org/pe-repo/ocde/ford#1.02.01Quantum exordium for natural language processing: A novel approach to sample on decodersinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionSUNEDULicenciado en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónTítulo ProfesionalCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación76923844https://orcid.org/0000-0002-8979-378529738760https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#tituloProfesional611016Yván Jesús Túpac ValdiviaJulio Omar Santisteban PabloORIGINALMUROYA_LEI_STE_EXO.pdfMUROYA_LEI_STE_EXO.pdfapplication/pdf4501237https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/437d884f-eade-45f5-94d6-0a4133500524/download50e701166fe37b0229146e10d93f6866MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/c8bf07ed-86da-4f3a-934c-87f9b9a75809/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTMUROYA_LEI_STE_EXO.pdf.txtMUROYA_LEI_STE_EXO.pdf.txtExtracted texttext/plain98427https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/ddfdfc4b-d516-44f8-87ec-7fbbbe54667e/download02b2062e5732beb4704f342b2e87a5a5MD53THUMBNAILMUROYA_LEI_STE_EXO.pdf.jpgMUROYA_LEI_STE_EXO.pdf.jpgGenerated Thumbnailimage/jpeg3900https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/148304b3-61ad-4ce1-8db8-bb6db58a1af6/downloadd841edb6627345edf5af0d0ffdbbf4e5MD5420.500.12590/16844oai:repositorio.ucsp.edu.pe:20.500.12590/168442023-10-31 14:19:14.364https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.423196
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).