Quantum exordium for natural language processing: A novel approach to sample on decoders

Descripción del Articulo

The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) ca...

Descripción completa

Detalles Bibliográficos
Autor: Muroya Lei, Stefanie
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16844
Enlace del recurso:https://hdl.handle.net/20.500.12590/16844
Nivel de acceso:acceso abierto
Materia:Quantum Annealing
ISING Model
Sampling
Natural Language Processing
Seq2Seq
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) can guide the search space of these samplers. The contribution of this work is given by showing an architecture to represent Recurrent Neural Networks (RNN) in a quantum computer to finally develop a quantum sampler. The individual architectures (i.e. summation, multiplication, argmax, and activation functions) achieve optimal accuracies in both simulated and quantum environments. While the results of the overall proposal show that it can either outperform or match greedy approaches. As the very first steps of quantum NLP, these are tested against simple RNN with a synthetic data set of random numbers, and a real quantum computer is utilized. Since ane functions are the basis of most Artificial Intelligence (AI) models, this method can be applied to more complex architectures in the future.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).