Detección de eventos anómalos en vídeo

Descripción del Articulo

En los últimos años, la detección de eventos anómalos en secuencias de video ha atraído una mayor atención en la comunidad de investigación de visión por computador. Esto ha ocurrido debido a la creciente necesidad de utilizar los sistemas de vigilancia automatizados para mejorar la seguridad en los...

Descripción completa

Detalles Bibliográficos
Autor: Menejes Palomino, Neptalí
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/15400
Enlace del recurso:https://hdl.handle.net/20.500.12590/15400
Nivel de acceso:acceso abierto
Materia:Detección de eventos anómalos
Análisis de vídeo
Procesamiento de imágenes
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_cb43596572cf849c92ac051a027ed835
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/15400
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv Detección de eventos anómalos en vídeo
title Detección de eventos anómalos en vídeo
spellingShingle Detección de eventos anómalos en vídeo
Menejes Palomino, Neptalí
Detección de eventos anómalos
Análisis de vídeo
Procesamiento de imágenes
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Detección de eventos anómalos en vídeo
title_full Detección de eventos anómalos en vídeo
title_fullStr Detección de eventos anómalos en vídeo
title_full_unstemmed Detección de eventos anómalos en vídeo
title_sort Detección de eventos anómalos en vídeo
author Menejes Palomino, Neptalí
author_facet Menejes Palomino, Neptalí
author_role author
dc.contributor.advisor.fl_str_mv Cámara Chávez, Guillermo
dc.contributor.author.fl_str_mv Menejes Palomino, Neptalí
dc.subject.es_PE.fl_str_mv Detección de eventos anómalos
Análisis de vídeo
Procesamiento de imágenes
topic Detección de eventos anómalos
Análisis de vídeo
Procesamiento de imágenes
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description En los últimos años, la detección de eventos anómalos en secuencias de video ha atraído una mayor atención en la comunidad de investigación de visión por computador. Esto ha ocurrido debido a la creciente necesidad de utilizar los sistemas de vigilancia automatizados para mejorar la seguridad en los espacios públicos y privados. Si bien se han logrado avances, todavía existen algunas limitaciones en la investigación actual. Es decir, la mayoría de los métodos de la literatura se enfocan en la detección de eventos anómalos específicos, y algunos todavía no son capaces de detectar más de dos tipos de anomalías. En esta investigación, se propone un nuevo modelo para la detección y localización de eventos anómalos en áreas peatonales. El objetivo es diseñar un algoritmo que permita detectar eventos anómalos mediante el uso de la información de movimiento y la apariencia. La información de movimiento se representa a través del uso de la velocidad y la aceleración del flujo óptico, y la información de apariencia es representado mediante la textura y la gradiente del flujo óptico. Para representar estas características se introduce el uso de parches espacio-temporales sin superposición. A diferencia de los métodos de la literatura, el modelo propuesto proporciona una solución general para detectar eventos anómalos tanto globales como locales. Además, en la etapa de detección se presentan problemas de perspectiva, esto debido a que los objetos cercanos a la cámara parecen ser grandes, mientras que los objetos alejados a la cámara parecen ser pequeños.. Para abordar estos problemas, se propone la clasificación por región. Los resultados experimentales sobre dos bases de datos (UCSD y UMN) y la comparación con los métodos de la literatura validan el rendimiento y la robustez del modelo propuesto. Los resultados del método propuesto sobre la base de datos UCSD Peds2 logra un EER de 07.2% y un AUC de 0.977 y en la base de datos UMN se logra un 0.998 de AUC en la escena 1 y 0.995 de AUC en la escena 3, estos resultados superan a los resultados de la literatura. Mientras tanto, los resultados sobre las bases de datos UCSD Peds1 logra un EER de 29.2% y un AUC de 0.792 y en la base de datos UMN escena 2 se logra un 0.948 de AUC, estos resultados son comparables con los resultados de los métodos de la literatura, esto ocurre debido a que estas bases de datos presentan problemas de perspectiva.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-08-10T16:15:37Z
dc.date.available.none.fl_str_mv 2017-08-10T16:15:37Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.other.none.fl_str_mv 1055569
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/15400
identifier_str_mv 1055569
url https://hdl.handle.net/20.500.12590/15400
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/371a1f28-314c-480a-a30a-69330996bcd8/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f40c0a3a-a93d-4992-a049-a38f6b14a22c/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d9d38db1-fd08-44ab-920e-eb0375a54b41/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7116edd6-90c2-40e9-9d15-cc3dc2c6954c/download
bitstream.checksum.fl_str_mv cd48808b8bddb8dd516da0026514a984
8a4605be74aa9ea9d79846c1fba20a33
70ef80a24bf1c76f9135fb4e08950202
9cd9afe81b616040b42d44dc5f1805f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053047184097280
spelling Cámara Chávez, GuillermoMenejes Palomino, Neptalí2017-08-10T16:15:37Z2017-08-10T16:15:37Z20171055569https://hdl.handle.net/20.500.12590/15400En los últimos años, la detección de eventos anómalos en secuencias de video ha atraído una mayor atención en la comunidad de investigación de visión por computador. Esto ha ocurrido debido a la creciente necesidad de utilizar los sistemas de vigilancia automatizados para mejorar la seguridad en los espacios públicos y privados. Si bien se han logrado avances, todavía existen algunas limitaciones en la investigación actual. Es decir, la mayoría de los métodos de la literatura se enfocan en la detección de eventos anómalos específicos, y algunos todavía no son capaces de detectar más de dos tipos de anomalías. En esta investigación, se propone un nuevo modelo para la detección y localización de eventos anómalos en áreas peatonales. El objetivo es diseñar un algoritmo que permita detectar eventos anómalos mediante el uso de la información de movimiento y la apariencia. La información de movimiento se representa a través del uso de la velocidad y la aceleración del flujo óptico, y la información de apariencia es representado mediante la textura y la gradiente del flujo óptico. Para representar estas características se introduce el uso de parches espacio-temporales sin superposición. A diferencia de los métodos de la literatura, el modelo propuesto proporciona una solución general para detectar eventos anómalos tanto globales como locales. Además, en la etapa de detección se presentan problemas de perspectiva, esto debido a que los objetos cercanos a la cámara parecen ser grandes, mientras que los objetos alejados a la cámara parecen ser pequeños.. Para abordar estos problemas, se propone la clasificación por región. Los resultados experimentales sobre dos bases de datos (UCSD y UMN) y la comparación con los métodos de la literatura validan el rendimiento y la robustez del modelo propuesto. Los resultados del método propuesto sobre la base de datos UCSD Peds2 logra un EER de 07.2% y un AUC de 0.977 y en la base de datos UMN se logra un 0.998 de AUC en la escena 1 y 0.995 de AUC en la escena 3, estos resultados superan a los resultados de la literatura. Mientras tanto, los resultados sobre las bases de datos UCSD Peds1 logra un EER de 29.2% y un AUC de 0.792 y en la base de datos UMN escena 2 se logra un 0.948 de AUC, estos resultados son comparables con los resultados de los métodos de la literatura, esto ocurre debido a que estas bases de datos presentan problemas de perspectiva.Trabajo de investigaciónapplication/pdfspaUniversidad Católica San Pabloinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPDetección de eventos anómalosAnálisis de vídeoProcesamiento de imágeneshttps://purl.org/pe-repo/ocde/ford#1.02.01Detección de eventos anómalos en vídeoinfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Facultad de Ingeniería y ComputaciónMaestríaCiencia de la ComputaciónEscuela Profesional de Ciencia de la ComputaciónORIGINALMENEJES_PALOMINO_NEP_DET.pdfMENEJES_PALOMINO_NEP_DET.pdfapplication/pdf4763432https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/371a1f28-314c-480a-a30a-69330996bcd8/downloadcd48808b8bddb8dd516da0026514a984MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/f40c0a3a-a93d-4992-a049-a38f6b14a22c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTMENEJES_PALOMINO_NEP_DET.pdf.txtMENEJES_PALOMINO_NEP_DET.pdf.txtExtracted texttext/plain126988https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d9d38db1-fd08-44ab-920e-eb0375a54b41/download70ef80a24bf1c76f9135fb4e08950202MD53THUMBNAILMENEJES_PALOMINO_NEP_DET.pdf.jpgMENEJES_PALOMINO_NEP_DET.pdf.jpgGenerated Thumbnailimage/jpeg3439https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7116edd6-90c2-40e9-9d15-cc3dc2c6954c/download9cd9afe81b616040b42d44dc5f1805f0MD5420.500.12590/15400oai:repositorio.ucsp.edu.pe:20.500.12590/154002023-10-30 09:19:29.192https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.395349
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).