Reducción de ruido de una nube de puntos densa 3D, basado en el regularizador de grafo laplaciano y preservando las características de forma fina

Descripción del Articulo

La nube de puntos 3D ha ganado cada vez más atención como representación de objetos para realizar la reconstrucción de superficies. La nube de puntos generada por sistemas de cámaras binoculares son fácilmente corrompidas ya sea cambios de iluminación en la captura, vibraciones de los sistemas o por...

Descripción completa

Detalles Bibliográficos
Autor: Cutire Sivincha, Wilber Eder
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/17123
Enlace del recurso:https://hdl.handle.net/20.500.12590/17123
Nivel de acceso:acceso abierto
Materia:Nube de Puntos
Eliminación de Ruido
Suavisado de Señal de Grafo
Aprendizaje para Datos en Grafo
Regularización de Grafo Laplaciano
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:La nube de puntos 3D ha ganado cada vez más atención como representación de objetos para realizar la reconstrucción de superficies. La nube de puntos generada por sistemas de cámaras binoculares son fácilmente corrompidas ya sea cambios de iluminación en la captura, vibraciones de los sistemas o por errores computacionales en la triangulación. Obtener una adecuada nube de puntos ayuda a conocer de forma más precisa el volumen del objeto a reconstruir. Para ello se busca eliminar el ruido que la nube de puntos presenta, manteniendo las características y los detalles de la superficie a reconstruir. En este trabajo proponemos un método que aprovecha de la estructura de la nube de puntos, para la construcción basada en grafo y usarlo como señal, además usamos un nuevo vector de características que representen a los nodos. Nos basamos en el regularizador de grafo laplaciano, construyendo un método con convergencia definida y realizamos una evaluación experimental para la demostrar robustez, y calidad de nuestro método, comparándolo con los métodos más relevantes del estado del arte.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).