Diseño de arquitectura de red neuronal convolucional para el diagnóstico del COVID19 mediante imágenes de rayos X
Descripción del Articulo
El COVID-19 fue una de las pandemias más mortales y la enfermedad que más rápido se propagó, debido a su alta transmisibilidad. La posibilidad de un diagnóstico erróneo causó varias consecuencias negativas al paciente infectado por COVID-19. Para abordar este problema, la tesis tiene como objetivo d...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Continental |
| Repositorio: | CONTINENTAL-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.continental.edu.pe:20.500.12394/14040 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12394/14040 |
| Nivel de acceso: | acceso abierto |
| Materia: | Infecciones por Coronavirus Diagnóstico por imágenes Rayos X Neuroanatomía https://purl.org/pe-repo/ocde/ford#2.02.01 |
| Sumario: | El COVID-19 fue una de las pandemias más mortales y la enfermedad que más rápido se propagó, debido a su alta transmisibilidad. La posibilidad de un diagnóstico erróneo causó varias consecuencias negativas al paciente infectado por COVID-19. Para abordar este problema, la tesis tiene como objetivo diseñar una arquitectura de red neuronal convolucional para el diagnóstico de COVID-19 mediante imágenes de rayos x. El método de desarrollo para la arquitectura es SEMMA; esto ayuda controlar mejor las etapas que se desarrollan. Asimismo, se realizó las pruebas con 753 imágenes rayos x para evaluar el rendimiento de la arquitectura entrenado usando varios parámetros de evaluación. Los resultados muestran que la arquitectura logra la mejor precisión de 90 %, exactitud del 91 % y sensibilidad del 93 %. En general, el modelo realiza un buen desempeño para detectar COVID-19. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).