Monthly semi-distributed hydrological model at national scale in Peru

Descripción del Articulo

Surface water resources in Peru are heterogeneously distributed in three drainage areas (Pacific, Titicaca, and Atlantic), and their quantification is relevant for planning in economic activities such as water supply and agriculture. However, their continuous monitoring at national scale becomes dif...

Descripción completa

Detalles Bibliográficos
Autores: Llauca, Harold, Lavado-Casimiro, W., Montesinos Cáceres, Cristian Albert, Rau, Pedro
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/1016
Enlace del recurso:https://hdl.handle.net/20.500.12542/1016
https://doi.org/10.5194/egusphere-egu2020-3769
Nivel de acceso:acceso abierto
Materia:Modelos y Simulación
Hydrological Model
Cuenca Hidrográfica
Caudal
https://purl.org/pe-repo/ocde/ford#1.05.11
gestion de recursos hidricos de cuenca - Agua
id SEAM_a072355179bf7c68ce5eb4c5a47c3b92
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/1016
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Monthly semi-distributed hydrological model at national scale in Peru
title Monthly semi-distributed hydrological model at national scale in Peru
spellingShingle Monthly semi-distributed hydrological model at national scale in Peru
Llauca, Harold
Modelos y Simulación
Hydrological Model
Cuenca Hidrográfica
Caudal
https://purl.org/pe-repo/ocde/ford#1.05.11
gestion de recursos hidricos de cuenca - Agua
title_short Monthly semi-distributed hydrological model at national scale in Peru
title_full Monthly semi-distributed hydrological model at national scale in Peru
title_fullStr Monthly semi-distributed hydrological model at national scale in Peru
title_full_unstemmed Monthly semi-distributed hydrological model at national scale in Peru
title_sort Monthly semi-distributed hydrological model at national scale in Peru
author Llauca, Harold
author_facet Llauca, Harold
Lavado-Casimiro, W.
Montesinos Cáceres, Cristian Albert
Rau, Pedro
author_role author
author2 Lavado-Casimiro, W.
Montesinos Cáceres, Cristian Albert
Rau, Pedro
author2_role author
author
author
dc.contributor.author.fl_str_mv Llauca, Harold
Lavado-Casimiro, W.
Montesinos Cáceres, Cristian Albert
Rau, Pedro
dc.subject.es_PE.fl_str_mv Modelos y Simulación
Hydrological Model
Cuenca Hidrográfica
Caudal
topic Modelos y Simulación
Hydrological Model
Cuenca Hidrográfica
Caudal
https://purl.org/pe-repo/ocde/ford#1.05.11
gestion de recursos hidricos de cuenca - Agua
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.none.fl_str_mv gestion de recursos hidricos de cuenca - Agua
description Surface water resources in Peru are heterogeneously distributed in three drainage areas (Pacific, Titicaca, and Atlantic), and their quantification is relevant for planning in economic activities such as water supply and agriculture. However, their continuous monitoring at national scale becomes difficult due to the low stream gauges density and short streamflow records. The aim of this work is to generate a database of simulated monthly streamflows at a national scale from January 1981 to December 2016, applying the parsimonious GR2M model in a semi-distributed approach, under a parameter regionalization scheme. For this, 3594 sub-basins (~300 km2) located in the three drainage areas were tested. These sub-basins were first grouped in 14 calibration regions based on a sensitivity analysis of the runoff ratio (RR) and runoff variability (RV) indexes derived from the GR2M outputs. The model was forced with monthly gridded-data of precipitation and potential evapotranspiration from the PISCO product (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) and was calibrated and validated with 38 stream gauges using the Kling-Gupta (KGE) metric. After the parameter regionalization processes, results showed KGE values from 0.5 to 0.8, and a good representation of the runoff seasonality. This is the first time that a monthly streamflow database (PISCO-HyM_GR2M) is developed at national scale in Peru in the 1981-2016 period. This new product will contribute to the hydrological droughts monitoring in Peru and understand water balance on ungauged basins.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-30T14:48:57Z
dc.date.available.none.fl_str_mv 2021-06-30T14:48:57Z
dc.date.issued.fl_str_mv 2020
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.sinia.none.fl_str_mv text/libro.presentacion
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Llauca, H., Lavado, W., Montesinos, C., and Rau, P. (2020).: Monthly semi-distributed hydrological model at national scale in Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3769, https://doi.org/10.5194/egusphere-egu2020-3769
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/1016
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/egusphere-egu2020-3769
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/1016
identifier_str_mv Llauca, H., Lavado, W., Montesinos, C., and Rau, P. (2020).: Monthly semi-distributed hydrological model at national scale in Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3769, https://doi.org/10.5194/egusphere-egu2020-3769
url https://hdl.handle.net/20.500.12542/1016
https://doi.org/10.5194/egusphere-egu2020-3769
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.uri.es_PE.fl_str_mv https://meetingorganizer.copernicus.org/EGU2020/EGU2020-3769.html
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv European Geosciences Union
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/1/Monthly-semi-distributed-hydrological-model-at-national-scale%20in-Peru_2020.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/2/license_rdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/3/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/4/Monthly-semi-distributed-hydrological-model-at-national-scale%20in-Peru_2020.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/5/Monthly-semi-distributed-hydrological-model-at-national-scale%20in-Peru_2020.pdf.jpg
bitstream.checksum.fl_str_mv 8d8471ea46263686339cfc42e86f8fb3
9868ccc48a14c8d591352b6eaf7f6239
8a4605be74aa9ea9d79846c1fba20a33
293dc4c9f8cff08a7cc8132ad45d20cc
154829646f410829fd1afe855cfa94a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1808916937734881280
spelling Llauca, HaroldLavado-Casimiro, W.Montesinos Cáceres, Cristian AlbertRau, Pedro2021-06-30T14:48:57Z2021-06-30T14:48:57Z2020Llauca, H., Lavado, W., Montesinos, C., and Rau, P. (2020).: Monthly semi-distributed hydrological model at national scale in Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3769, https://doi.org/10.5194/egusphere-egu2020-3769https://hdl.handle.net/20.500.12542/1016https://doi.org/10.5194/egusphere-egu2020-3769https://hdl.handle.net/20.500.12542/1016Surface water resources in Peru are heterogeneously distributed in three drainage areas (Pacific, Titicaca, and Atlantic), and their quantification is relevant for planning in economic activities such as water supply and agriculture. However, their continuous monitoring at national scale becomes difficult due to the low stream gauges density and short streamflow records. The aim of this work is to generate a database of simulated monthly streamflows at a national scale from January 1981 to December 2016, applying the parsimonious GR2M model in a semi-distributed approach, under a parameter regionalization scheme. For this, 3594 sub-basins (~300 km2) located in the three drainage areas were tested. These sub-basins were first grouped in 14 calibration regions based on a sensitivity analysis of the runoff ratio (RR) and runoff variability (RV) indexes derived from the GR2M outputs. The model was forced with monthly gridded-data of precipitation and potential evapotranspiration from the PISCO product (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) and was calibrated and validated with 38 stream gauges using the Kling-Gupta (KGE) metric. After the parameter regionalization processes, results showed KGE values from 0.5 to 0.8, and a good representation of the runoff seasonality. This is the first time that a monthly streamflow database (PISCO-HyM_GR2M) is developed at national scale in Peru in the 1981-2016 period. This new product will contribute to the hydrological droughts monitoring in Peru and understand water balance on ungauged basins.application/pdfengEuropean Geosciences Unionhttps://meetingorganizer.copernicus.org/EGU2020/EGU2020-3769.htmlinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/3.0/us/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIModelos y SimulaciónHydrological ModelCuenca HidrográficaCaudalhttps://purl.org/pe-repo/ocde/ford#1.05.11gestion de recursos hidricos de cuenca - AguaMonthly semi-distributed hydrological model at national scale in Peruinfo:eu-repo/semantics/conferenceObjecttext/libro.presentacionORIGINALMonthly-semi-distributed-hydrological-model-at-national-scale in-Peru_2020.pdfMonthly-semi-distributed-hydrological-model-at-national-scale in-Peru_2020.pdfTexto Completoapplication/pdf297773http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/1/Monthly-semi-distributed-hydrological-model-at-national-scale%20in-Peru_2020.pdf8d8471ea46263686339cfc42e86f8fb3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTMonthly-semi-distributed-hydrological-model-at-national-scale in-Peru_2020.pdf.txtMonthly-semi-distributed-hydrological-model-at-national-scale in-Peru_2020.pdf.txtExtracted texttext/plain2109http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/4/Monthly-semi-distributed-hydrological-model-at-national-scale%20in-Peru_2020.pdf.txt293dc4c9f8cff08a7cc8132ad45d20ccMD54THUMBNAILMonthly-semi-distributed-hydrological-model-at-national-scale in-Peru_2020.pdf.jpgMonthly-semi-distributed-hydrological-model-at-national-scale in-Peru_2020.pdf.jpgGenerated Thumbnailimage/jpeg4765http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/1016/5/Monthly-semi-distributed-hydrological-model-at-national-scale%20in-Peru_2020.pdf.jpg154829646f410829fd1afe855cfa94a3MD5520.500.12542/1016oai:repositorio.senamhi.gob.pe:20.500.12542/10162024-08-22 16:25:55.558Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).