Exportación Completada — 

High-resolution grids of daily air temperature for Peru - the new PISCOt v1.2 dataset

Descripción del Articulo

Gridded high-resolution climate datasets are increasingly important for a wide range of modelling applications. Here we present PISCOt (v1.2), a novel high spatial resolution (0.01°) dataset of daily air temperature for entire Peru (1981–2020). The dataset development involves four main steps: (i) q...

Descripción completa

Detalles Bibliográficos
Autores: Huerta, Adrian, Aybar, Cesar, Correa, Kris, Noemi, Imfeld, Felipe-Obando, Oscar, Rau, Pedro, Drenkhan, Fabian
Formato: artículo
Fecha de Publicación:2023
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/3050
Enlace del recurso:https://hdl.handle.net/20.500.12542/3050
https://doi.org/10.1038/s41597-023-02777-w
Nivel de acceso:acceso abierto
Materia:Climate Change
Ecosystem
https://purl.org/pe-repo/ocde/ford#1.05.09
ecosistemas de transicion - Biodiversidad y Ecosistemas
Descripción
Sumario:Gridded high-resolution climate datasets are increasingly important for a wide range of modelling applications. Here we present PISCOt (v1.2), a novel high spatial resolution (0.01°) dataset of daily air temperature for entire Peru (1981–2020). The dataset development involves four main steps: (i) quality control; (ii) gap-filling; (iii) homogenisation of weather stations, and (iv) spatial interpolation using additional data, a revised calculation sequence and an enhanced version control. This improved methodological framework enables capturing complex spatial variability of maximum and minimum air temperature at a more accurate scale compared to other existing datasets (e.g. PISCOt v1.1, ERA5-Land, TerraClimate, CHIRTS). PISCOt performs well with mean absolute errors of 1.4 °C and 1.2 °C for maximum and minimum air temperature, respectively. For the first time, PISCOt v1.2 adequately captures complex climatology at high spatiotemporal resolution and therefore provides a substantial improvement for numerous applications at local-regional level. This is particularly useful in view of data scarcity and urgently needed model-based decision making for climate change, water balance and ecosystem assessment studies in Peru.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).