Modelo de redes neuronales artificiales para el pronóstico del número de visitantes extranjeros a Machu Picchu en comparación con la metodología de Box y Jenkins

Descripción del Articulo

El objetivo fundamental fue comparar la metodología de Box-Jenkins, que se utiliza para pronosticar con series de tiempo, y el método de redes neuronales artificiales, que es un método de la inteligencia artificial. A la serie número mensual de visitantes extranjeros al santuario histórico de Machu...

Descripción completa

Detalles Bibliográficos
Autor: Lazo Chuquihuayta, Henry
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Universidad Nacional de San Antonio Abad del Cusco
Repositorio:UNSAAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsaac.edu.pe:20.500.12918/4637
Enlace del recurso:http://hdl.handle.net/20.500.12918/4637
Nivel de acceso:acceso abierto
Materia:Red neuronal artificial
Perceptrón multicapa
Metodología Box-Jenkins
ARIMA
http://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:El objetivo fundamental fue comparar la metodología de Box-Jenkins, que se utiliza para pronosticar con series de tiempo, y el método de redes neuronales artificiales, que es un método de la inteligencia artificial. A la serie número mensual de visitantes extranjeros al santuario histórico de Machu Picchu de Cusco 2002-2018 se le aplicó la metodología de Box-Jenkins y el método de redes neuronales artificiales. Particularmente, se utiliza el modelo de red neuronal tipo Perceptrón Multicapa que tuvo seis entradas o retrasos de la serie (Yt-1, Yt-2, Yt-3, Yt-4, Yt-12 ,Yt-24), donde se consideró cuatro neuronas (nodos) en la capa oculta y una neurona (nodo) en la capa de salida, el cual tuvo una capacidad de predicción más precisa con un MAPE de 4.41% a comparación del modelo ARIMA que tiene un MAPE de 7.66%. Los pronósticos para el primer semestre del 2018 realizados por el modelo de red neuronal se parecen más al patrón histórico de la serie. Los datos fueron analizados utilizando el software R-project.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).