Diseño e implementación de un sistema detector de somnolencia en tiempo real mediante visión computacional usando redes neuronales convolucionales aplicado a conductores
Descripción del Articulo
Actualmente, la seguridad vial es una preocupación global importante debido a los accidentes de tráfico causados por la fatiga del conductor, que representan una de las principales amenazas en las carreteras y provocan la pérdida de vidas, especialmente en países en desarrollo. Para abordar este des...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de San Antonio Abad del Cusco |
Repositorio: | UNSAAC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.unsaac.edu.pe:20.500.12918/8298 |
Enlace del recurso: | http://hdl.handle.net/20.500.12918/8298 |
Nivel de acceso: | acceso abierto |
Materia: | Sistema detector Detección de bostezos Red neuronal convolucional NVIDIA http://purl.org/pe-repo/ocde/ford#2.02.03 |
Sumario: | Actualmente, la seguridad vial es una preocupación global importante debido a los accidentes de tráfico causados por la fatiga del conductor, que representan una de las principales amenazas en las carreteras y provocan la pérdida de vidas, especialmente en países en desarrollo. Para abordar este desafío, esta investigación propone un sistema portátil que detecta la somnolencia del conductor en tiempo real al analizar el estado de la boca y los ojos. El sistema utiliza hardware NVIDIA Jetson Nano junto con una cámara de infrarrojo cercano (NIR). Detecta bostezos mediante el uso del Mouth Aspect Ratio (MAR) y la somnolencia visual a través de redes neuronales convolucionales (CNN) centradas en la región ocular, con una técnica de corrección de la región de interés (ROI) de los ojos. Se evaluaron tres CNN (InceptionV3, VGG16 y ResNet50V2) con transfer learning, así como dos arquitecturas propuestas (DD-AI y DD-AI-G). Las pruebas con voluntarias en condiciones simuladas y reales de conducción demostraron el buen rendimiento del prototipo. La red DD-AI-G sobresalió en las pruebas simuladas y alcanzó un promedio del 91.48% de precisión y un 86.28% de tasa de detección de somnolencia visual en un entorno de conducción real, ejecutada en el hardware NVIDIA Jetson Nano. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).