Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers
Descripción del Articulo
Clustering (agrupamiento) es usualmente considerado el problema más importante del aprendizaje automático no supervisado. Al igual que los problemas no supervisados, el problema del clustering consiste en descubrir patrones de agrupamiento. En particular, se busca agrupar un conjunto de datos no eti...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional de San Antonio Abad del Cusco |
Repositorio: | UNSAAC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.unsaac.edu.pe:20.500.12918/4427 |
Enlace del recurso: | http://hdl.handle.net/20.500.12918/4427 |
Nivel de acceso: | acceso abierto |
Materia: | Center-based Clustering Social Spider Optimization Optimización Multiobjetivo Algoritmos de Aproximación SSO-C Emax http://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
RUNS_a67d94971525a84359ca29e5fa822269 |
---|---|
oai_identifier_str |
oai:repositorio.unsaac.edu.pe:20.500.12918/4427 |
network_acronym_str |
RUNS |
network_name_str |
UNSAAC-Institucional |
repository_id_str |
|
dc.title.es_PE.fl_str_mv |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
title |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
spellingShingle |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers Leon Malpartida, Jared Center-based Clustering Social Spider Optimization Optimización Multiobjetivo Algoritmos de Aproximación SSO-C Emax http://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
title_full |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
title_fullStr |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
title_full_unstemmed |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
title_sort |
Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliers |
author |
Leon Malpartida, Jared |
author_facet |
Leon Malpartida, Jared |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Enciso Rodas, Lauro |
dc.contributor.author.fl_str_mv |
Leon Malpartida, Jared |
dc.subject.es_PE.fl_str_mv |
Center-based Clustering Social Spider Optimization Optimización Multiobjetivo Algoritmos de Aproximación SSO-C Emax |
topic |
Center-based Clustering Social Spider Optimization Optimización Multiobjetivo Algoritmos de Aproximación SSO-C Emax http://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
Clustering (agrupamiento) es usualmente considerado el problema más importante del aprendizaje automático no supervisado. Al igual que los problemas no supervisados, el problema del clustering consiste en descubrir patrones de agrupamiento. En particular, se busca agrupar un conjunto de datos no etiquetados en conjuntos llamados clusters (o grupos). Dada la naturaleza del problema, este aparece en multitud de áreas de investigación como: compresión de datos, análisis de imágenes, bioinformática, y minería de datos. A la fecha, se han diseñado multitud de algoritmos y modelos de clustering. También, se ha generalizado el tipo de datos con los que se puede aplicar esta técnica. Uno de los modelos de clustering más ampliamente utilizados está relacionado con el conjunto de problemas centerbased. Este conjunto de problemas es uno de los más recientemente estudiados debido a su eficiencia con grandes cantidades de datos. En general, un problema de este tipo busca particionar el conjunto inicial de elementos tomando como base algunos elementos centrales. Con el objetivo de mejorar las técnicas actuales en esta rama; la presente investigación desarrolla y propone un nuevo algoritmo de clustering, denominado el algoritmo SSO-C. La metodología seguida para desarrollar el algoritmo consistió en la optimización de una función multiobjetivo que relaciona dos problemas formalmente definidos con el propósito de garantizar la robustez de la solución encontrada. Como búsqueda local para valores iniciales, se tomó soluciones con un cierto factor de aproximación para un problema de optimización combinatoria relacionado, el problema k-center. En la investigación también se desarrolla y propone un segundo algoritmo de clustering, denominado el algoritmo Emax. Este segundo algoritmo es derivado del caso más robusto de la función multiobjetivo. La convergencia del algoritmo Emax es demostrada. Para efectos de comparación, se tomaron los algoritmos k-means y SSO. El primero es uno de los algoritmo más utilizados para hacer clustering, y el segundo es una adaptación delalgoritmo de optimización Social Spider Optimization para clustering; ambospertenecientes al modelo center-based. Se compararon los algoritmos mencionados junto con los propuestos (SSO-C y Emax) tomando un conjunto de 6 conjuntos de datos sintéticamente generados y 7 del mundo real tomados de la literatura. Los experimentos muestran con significación estadística que los algoritmos SSO-C y Emax dan los mejores resultados entre los algoritmos comparados. Se espera que los algoritmos propuestos generen contribuciones significativas para estado del arte. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-09-09T23:33:44Z |
dc.date.available.none.fl_str_mv |
2019-09-09T23:33:44Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.other.none.fl_str_mv |
253T20190448 IN/011/2019 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12918/4427 |
identifier_str_mv |
253T20190448 IN/011/2019 |
url |
http://hdl.handle.net/20.500.12918/4427 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.en_US.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.format.en_US.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional de San Antonio Abad del Cusco |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Nacional de San Antonio Abad del Cusco Repositorio Institucional - UNSAAC |
dc.source.none.fl_str_mv |
reponame:UNSAAC-Institucional instname:Universidad Nacional de San Antonio Abad del Cusco instacron:UNSAAC |
instname_str |
Universidad Nacional de San Antonio Abad del Cusco |
instacron_str |
UNSAAC |
institution |
UNSAAC |
reponame_str |
UNSAAC-Institucional |
collection |
UNSAAC-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.unsaac.edu.pe/bitstream/20.500.12918/4427/1/253T20190448_TC.pdf http://repositorio.unsaac.edu.pe/bitstream/20.500.12918/4427/2/253T20190448_TC.pdf.txt |
bitstream.checksum.fl_str_mv |
288ac5b58b13cfbb233b07c664657679 17e6a7d5533555323c416648ab65dc17 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la UNSAAC |
repository.mail.fl_str_mv |
soporte.repositorio@unsaac.edu.pe |
_version_ |
1742881444001218560 |
spelling |
Enciso Rodas, LauroLeon Malpartida, Jared2019-09-09T23:33:44Z2019-09-09T23:33:44Z2019253T20190448IN/011/2019http://hdl.handle.net/20.500.12918/4427Clustering (agrupamiento) es usualmente considerado el problema más importante del aprendizaje automático no supervisado. Al igual que los problemas no supervisados, el problema del clustering consiste en descubrir patrones de agrupamiento. En particular, se busca agrupar un conjunto de datos no etiquetados en conjuntos llamados clusters (o grupos). Dada la naturaleza del problema, este aparece en multitud de áreas de investigación como: compresión de datos, análisis de imágenes, bioinformática, y minería de datos. A la fecha, se han diseñado multitud de algoritmos y modelos de clustering. También, se ha generalizado el tipo de datos con los que se puede aplicar esta técnica. Uno de los modelos de clustering más ampliamente utilizados está relacionado con el conjunto de problemas centerbased. Este conjunto de problemas es uno de los más recientemente estudiados debido a su eficiencia con grandes cantidades de datos. En general, un problema de este tipo busca particionar el conjunto inicial de elementos tomando como base algunos elementos centrales. Con el objetivo de mejorar las técnicas actuales en esta rama; la presente investigación desarrolla y propone un nuevo algoritmo de clustering, denominado el algoritmo SSO-C. La metodología seguida para desarrollar el algoritmo consistió en la optimización de una función multiobjetivo que relaciona dos problemas formalmente definidos con el propósito de garantizar la robustez de la solución encontrada. Como búsqueda local para valores iniciales, se tomó soluciones con un cierto factor de aproximación para un problema de optimización combinatoria relacionado, el problema k-center. En la investigación también se desarrolla y propone un segundo algoritmo de clustering, denominado el algoritmo Emax. Este segundo algoritmo es derivado del caso más robusto de la función multiobjetivo. La convergencia del algoritmo Emax es demostrada. Para efectos de comparación, se tomaron los algoritmos k-means y SSO. El primero es uno de los algoritmo más utilizados para hacer clustering, y el segundo es una adaptación delalgoritmo de optimización Social Spider Optimization para clustering; ambospertenecientes al modelo center-based. Se compararon los algoritmos mencionados junto con los propuestos (SSO-C y Emax) tomando un conjunto de 6 conjuntos de datos sintéticamente generados y 7 del mundo real tomados de la literatura. Los experimentos muestran con significación estadística que los algoritmos SSO-C y Emax dan los mejores resultados entre los algoritmos comparados. Se espera que los algoritmos propuestos generen contribuciones significativas para estado del arte.Tesisapplication/pdfspaUniversidad Nacional de San Antonio Abad del CuscoPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Universidad Nacional de San Antonio Abad del CuscoRepositorio Institucional - UNSAACreponame:UNSAAC-Institucionalinstname:Universidad Nacional de San Antonio Abad del Cuscoinstacron:UNSAACCenter-based ClusteringSocial Spider OptimizationOptimización MultiobjetivoAlgoritmos de AproximaciónSSO-CEmaxhttp://purl.org/pe-repo/ocde/ford#1.02.01Algoritmo de optimización multiobjetivo para el problema center-based clustering para conjuntos con outliersinfo:eu-repo/semantics/bachelorThesisSUNEDUIngeniero Informático y de SistemasUniversidad Nacional de San Antonio Abad del Cusco. Facultad de Ingeniería Eléctrica, Electrónica, Informática y MecánicaTítulo profesionalIngeniería Informática y de Sistemas72712961https://orcid.org/0000-0001-6266-083823853228http://purl.org/pe-repo/renati/type#tesishttp://purl.org/pe-repo/renati/nivel#tituloProfesional612296ORIGINAL253T20190448_TC.pdfapplication/pdf466404http://repositorio.unsaac.edu.pe/bitstream/20.500.12918/4427/1/253T20190448_TC.pdf288ac5b58b13cfbb233b07c664657679MD51TEXT253T20190448_TC.pdf.txt253T20190448_TC.pdf.txtExtracted texttext/plain126488http://repositorio.unsaac.edu.pe/bitstream/20.500.12918/4427/2/253T20190448_TC.pdf.txt17e6a7d5533555323c416648ab65dc17MD5220.500.12918/4427oai:repositorio.unsaac.edu.pe:20.500.12918/44272021-07-27 21:39:48.244DSpace de la UNSAACsoporte.repositorio@unsaac.edu.pe |
score |
13.835634 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).