Solución de las ecuaciones diferenciales parciales utilizando las ecuaciones integrales

Descripción del Articulo

En el proceso de describir los fenómenos que ocurren en la naturaleza, el uso de las ecuaciones diferenciales en derivadas parciales es de gran importancia y en consecuencia encontrar su respectiva solución que nos proporcione el comportamiento del fenómeno natural. Es así que en el presente trabajo...

Descripción completa

Detalles Bibliográficos
Autores: Aguilar Arizaca, Bommel Ronald, Rojas Rayme, Ever
Formato: tesis de grado
Fecha de Publicación:2014
Institución:Universidad Nacional de San Antonio Abad del Cusco
Repositorio:UNSAAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsaac.edu.pe:20.500.12918/1461
Enlace del recurso:http://hdl.handle.net/20.500.12918/1461
Nivel de acceso:acceso cerrado
Materia:Ecuaciones diferenciales
Ecuaciones integrales de Fredholm
Funciones de Green
Ecuaciones diferenciales en derivadas parciales
Ecuaciones integrales
http://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:En el proceso de describir los fenómenos que ocurren en la naturaleza, el uso de las ecuaciones diferenciales en derivadas parciales es de gran importancia y en consecuencia encontrar su respectiva solución que nos proporcione el comportamiento del fenómeno natural. Es así que en el presente trabajo de investigación se establece un procedimiento para poder encontrar la solución a las ecuaciones diferenciales en derivadas parciales de la cuerda vibrante de longitud finita y la conducción de calor a través de una varilla de longitud finita. Este procedimiento utiliza las funciones de Green como funciones auxiliares y las ecuaciones integrales. En el capítulo I, se expone el planteamiento metodológico utilizado en la investigación. En el capítulo II, se presenta las nociones fundamentales del algebra lineal, análisis real y análisis funcional para sustentar los espacios en los cuales se harán las operaciones y las propiedades que se utilizaran en el último capítulo del trabajo. En el capítulo III se introduce la teoría de las ecuaciones diferenciales ordinarias, ecuaciones diferenciales en derivadas parciales visto desde el punto de vista de operadores, ecuaciones integrales y las funciones de Green como una función auxiliar para convertir una ecuación diferencial ordinaria a una ecuación integral equivalente para abordar la solución de las ecuaciones diferenciales parciales del tipo hiperbólico y parabólico. En el capítulo IV, se presenta el desarrollo del trabajo de investigación mostrándose el nexo existente entre las ecuaciones integrales de Fredholm y las ecuaciones diferenciales en derivadas parciales y se hace una exposición detallada de cómo estas últimas ecuaciones son resueltas a través del uso de las ecuaciones diferenciales ordinarias, las funciones de Green y las ecuaciones integrales. De esta forma se logra el objetivo planteado de resolver las ecuaciones diferenciales en derivadas parciales mediante las ecuaciones integrales y se muestra que se obtiene el mismo resultado por el método propuesto en el trabajo de investigación.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).