Modelos autorregresivos integrados de media móvil y red neuronal recurrente para predecir la demanda de medicamentos, Hospital Regional Cusco, 2013 - 2018

Descripción del Articulo

El objetivo principal de la presente investigación es analizar los modelos autorregresivo integrado de media móvil (ARIMA) o la red neuronal recurrente tipo de memoria a corto y largo plazo (RNNLSTM) para predecir adecuadamente la demanda de medicamentos en el Hospital Regional del Cusco, 2018. El e...

Descripción completa

Detalles Bibliográficos
Autor: Puma Cardenas, Amilcar
Formato: tesis de maestría
Fecha de Publicación:2020
Institución:Universidad Nacional de San Antonio Abad del Cusco
Repositorio:UNSAAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsaac.edu.pe:20.500.12918/5669
Enlace del recurso:http://hdl.handle.net/20.500.12918/5669
Nivel de acceso:acceso abierto
Materia:Autorregresivo
Media móvil
Red neuronal
Error porcentual
http://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:El objetivo principal de la presente investigación es analizar los modelos autorregresivo integrado de media móvil (ARIMA) o la red neuronal recurrente tipo de memoria a corto y largo plazo (RNNLSTM) para predecir adecuadamente la demanda de medicamentos en el Hospital Regional del Cusco, 2018. El estudio es de tipo descriptivo y predictiva-longitudinal, donde se utilizo los modelos ARIMA y RNNLSTM. La población y la muestra de estudio está constituida por cinco medicamentos con mayor demanda entre enero 2013 a diciembre 2017. Para el procesamiento de los datos se utiliza el software libre R Project (R). Los resultados obtenidos son los siguientes: en cuanto a los modelos ARIMA se tiene Cloruro de sodio 900 mg/1000 ml inyectable con un MAPE de 4.50; Ibuprofeno 400 mg tableta con un MAPE de 27.57; Metamizol sódico 1g/2 ml inyectable con un MAPE de 4.66; Paracetamol 500 mg tableta con un MAPE de 23.47; y Sevoflurano 250 ml solución con un MAPE de 10.54. Respecto a los modelos RNNLSTM se tiene Cloruro de sodio 900 mg/1000 ml inyectable con un MAPE de 4.78; Ibuprofeno 400 mg tableta con un MAPE de 25.00; Metamizol sódico 1g/2 ml inyectable con un MAPE de 1.85; Paracetamol 500 mg tableta con un MAPE de 22.19; y Sevoflurano 250 ml solución con un MAPE de 9.53. Se concluye que el modelo de la RNNLSTM permite predecir adecuadamente la demanda de medicamentos frente al modelo ARIMA con una reducción del MAPE en promedio de 1.92 y 0.28 respectivamente.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).