Estabilidad estructural de sistemas dinámicos autónomos no lineales a través de ciclos límites y su visualización computacional

Descripción del Articulo

El estado de un sistema dinámico se describe por las coordenadas de un punto en el espacio fásico y a medida que el tiempo avanza, ese punto describe una trayectoria u órbita; para regresar de nuevo a si mismo, entonces la órbita es cerrada. La existencia de soluciones periódicas depende de las prop...

Descripción completa

Detalles Bibliográficos
Autor: Choque Huaman, Patricio
Formato: tesis de maestría
Fecha de Publicación:2008
Institución:Universidad Nacional de San Antonio Abad del Cusco
Repositorio:UNSAAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsaac.edu.pe:20.500.12918/5427
Enlace del recurso:http://hdl.handle.net/20.500.12918/5427
Nivel de acceso:acceso abierto
Materia:Sistemas dinámicos autónomos no lineales
Morfotectónica
Paleosismológica
Modelos de elevación digital
http://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:El estado de un sistema dinámico se describe por las coordenadas de un punto en el espacio fásico y a medida que el tiempo avanza, ese punto describe una trayectoria u órbita; para regresar de nuevo a si mismo, entonces la órbita es cerrada. La existencia de soluciones periódicas depende de las propiedades topológicas y la relación entre la posición de un punto actual y después de un tiempo “t”. La propiedad más importante de un sistema dinámico es su comportamiento cualitativo a largo plazo. La esencia de un atractor es que es alguna porción del espacio de fases, tal que cualquier punto que comienza a moverse en sus proximidades se aproxima cada vez más a él. Surge así el problema de gran importancia práctica, el de hallar las condiciones bajo las cuales una variación arbitrariamente pequeña en las funciones de definición del sistema dinámico, ocasiona una variación arbitrariamente pequeña de la solución. En este contexto, en este trabajo de tesis se determina la estabilidad estructural de sistemas dinámicos autónomos no lineales a través de ciclos límite y se visualiza computacionalmente los espacios de fases y campos de flujo de estos sistemas utilizando el software mathematica versión 5.1. Con este propósito, se inicia el trabajo con la sustentación científica de la investigación, se pone énfasis en los flujos asociados, conjugación de sistemas, sistemas hiperbólicos, campos vectoriales, sistemas autónomos no lineales, singularidades hiperbólicas, singularidades no hiperbólicas y la estabilidad en el sentido de Liapunov. A continuación, se describen e interpretan los ciclos límite y la estabilidad estructural de sistemas autónomos no lineales, utilizando el teorema de linealización de Hartman -Grobman, teorema de la variedad estable, el teorema de Liapunov y el teorema de Poincaré - Bendixon. Finalmente se presentan las aplicaciones a la electrónica el oscilador de Van Der Pol y a la ecología el modelo presa-depredador, utilizando todas las herramientas matemáticas y computacionales expuestas en la parte anterior. En éste trabajo de investigación se utilizó el método deductivo, puesto que se determinó en forma general la estabilidad estructural de sistemas dinámicos autónomos no lineales n-dimensionales a través de ciclos límite, para luego particularizarla a sistemas autónomos no lineales bidimensionales. La técnica utilizada fue el análisis, puesto que se analizó las soluciones periódicas de sistemas dinámicos autónomos no lineales.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).