Análisis de redes neuronales artificiales para el pronóstico de las enfermedades prevalentes en el hospital Víctor Ramos Guardia de Huaraz, 2016

Descripción del Articulo

El presente trabajo de tesis según su diseño es no experimental, longitudinal de tipo serie de tiempo y tuvo por objetivo pronosticar las enfermedades prevalentes mediante Redes Neuronales Artificiales en el Hospital Víctor Ramos Guardia de Huaraz, 2016, mediante la aplicación de las redes neuronale...

Descripción completa

Detalles Bibliográficos
Autores: Mautino Vidaurre, Jhojan Pierre, Córdova Delgado, Edwin Rober
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional Santiago Antúnez de Mayolo
Repositorio:UNASAM-Institucional
Lenguaje:español
OAI Identifier:oai:172.16.0.151:UNASAM/3545
Enlace del recurso:http://repositorio.unasam.edu.pe/handle/UNASAM/3545
Nivel de acceso:acceso abierto
Materia:Red neuronal artificial
Perceptron multicapa
Descripción
Sumario:El presente trabajo de tesis según su diseño es no experimental, longitudinal de tipo serie de tiempo y tuvo por objetivo pronosticar las enfermedades prevalentes mediante Redes Neuronales Artificiales en el Hospital Víctor Ramos Guardia de Huaraz, 2016, mediante la aplicación de las redes neuronales artificiales. Los resultados obtenidos indican que el mejor modelo de pronóstico encontrado es una red neuronal artificial modelo perceptron multicapa con una capa de entrada compuesta por cuatro neuronas, dos capas ocultas compuesta entre 4 a 8 neuronas en la primera capa oculta y entre 4 a 7 neuronas en la segunda capa oculta, y una capa de salida compuesta por una neurona, mediante funciones de activación logística y método de retropropagación como función de corrección del error, así mismo todos los modelos de redes neuronales artificiales encontrados presentan errores globales tendientes a cero
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).