Solución númerica de la educación del calor mediante el método de los elementos finitos

Descripción del Articulo

El método de los elementos finitos (MEF) es un método numérico avanzado que permite obtener una aproximación de la solución de un problema de contorno, asociado a una ecuación diferencial parcial, bajo ciertas condiciones de frontera. Con el objetivo de encontrar una solución aproximada de la ecuaci...

Descripción completa

Detalles Bibliográficos
Autor: Cerafín Urbano, Efraín Isidro
Formato: tesis de grado
Fecha de Publicación:2011
Institución:Universidad Nacional Santiago Antúnez de Mayolo
Repositorio:UNASAM-Institucional
Lenguaje:español
OAI Identifier:oai:172.16.0.151:UNASAM/1137
Enlace del recurso:http://repositorio.unasam.edu.pe/handle/UNASAM/1137
Nivel de acceso:acceso abierto
Materia:El problema de la ecuación del calor
Método de elementos finitos
Sistema de ecuaciones diferenciales ordinarias
Método de diferencias hacia adelante
El método de diferencia hacia atrás
Descripción
Sumario:El método de los elementos finitos (MEF) es un método numérico avanzado que permite obtener una aproximación de la solución de un problema de contorno, asociado a una ecuación diferencial parcial, bajo ciertas condiciones de frontera. Con el objetivo de encontrar una solución aproximada de la ecuación del calor mediante el método de los elementos finitos, con polinomios de primer grado, de presentó algunas definiciones y teoremas importantes del análisis funcional, tales como los espacios de Hilbert, Sobolev, el teorema de Lax-Milgram y el elemento finito triangular. Se necesita del método de Galerkin para obtener de la formulación variacional. del modelo un sistema de ecuaciones lineales en el caso estacionario, y un sistema de ecuaciones diferenciales ordinarias en el caso no estacionario. Asimismo se necesita de la técnica de integración del tiempo. Para resolver el sistema de ecuaciones diferenciales ordinarias se aplicó el método de diferencias hacia adelante y el método de diferencias hacia atrás para la derivada del tiempo. Para llevar acabo esta tarea se tuvo que elaborar un programa en MATLAB 7.0 el cual se aplicó a un modelo de la ecuación del calor homogénea con condiciones de Dirichelt homogénea y/o no homogénea y condición de Neumann homogénea y obtener valores de la solución aproximada los cuales compararemos con la solución analítica para demostrar la eficiencia con base al error absoluto. Estos resultados se encuentran plasmados en este trabajo.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).