Families of Graceful Spiders with (2k+1)k, (2k+1)k+1 and (2k+1)+k+1 Legs

Descripción del Articulo

We say that a tree is a spider if has at most one vertex of degree greater than two. We obtain existence of families of gracefuls spiders with ℓ(2k +1)−k, ℓ(2k +1)−k +1 and ℓ(2k +1)+k +1 legs. We provide specific labels for each spider graph, these labels are constructed from graceful path graphs th...

Descripción completa

Detalles Bibliográficos
Autores: Berrocal Huamani, Nelson, Atoche Bravo, María Jacqueline, Poma, F.
Formato: otro
Fecha de Publicación:2025
Institución:Universidad Nacional de Huancavelica
Repositorio:UNH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unh.edu.pe:20.500.14597/9165
Enlace del recurso:https://doi.org/10.37256/cm.6120255497
https://hdl.handle.net/20.500.14597/9165
Nivel de acceso:acceso abierto
Materia:Graceful labeling
Graph labeling
Tree
Spider
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:We say that a tree is a spider if has at most one vertex of degree greater than two. We obtain existence of families of gracefuls spiders with ℓ(2k +1)−k, ℓ(2k +1)−k +1 and ℓ(2k +1)+k +1 legs. We provide specific labels for each spider graph, these labels are constructed from graceful path graphs that have a particular label, so there is acorrespondence between some paths and graceful spiders that we are studying, this correspondence is described in an algorithm outlined in the preliminaries.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).