Modelo predictivo basado en minería de datos para la mejora en toma de decisiones en el consultorio de medicina rehabilitación en el Hospital Daniel Alcides Carrión Pasco, 2023

Descripción del Articulo

El trabajo de investigación que realice se titula: “Modelo Predictivo basado en minería de datos para la mejora en toma de decisiones en el Consultorio de Medicina rehabilitación en el Hospital Daniel Alcides Carrión Pasco, 2023” El objetivo principal es desarrollar un modelo predictivo basado en la...

Descripción completa

Detalles Bibliográficos
Autores: Celis Trinidad, Deisy Jakelin, Japa Oscategui, Elena Lucero
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Nacional Daniel Alcides Carrión
Repositorio:UNDAC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.undac.edu.pe:undac/4201
Enlace del recurso:http://repositorio.undac.edu.pe/handle/undac/4201
Nivel de acceso:acceso abierto
Materia:Modelo predictivo
Toma de decisiones
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El trabajo de investigación que realice se titula: “Modelo Predictivo basado en minería de datos para la mejora en toma de decisiones en el Consultorio de Medicina rehabilitación en el Hospital Daniel Alcides Carrión Pasco, 2023” El objetivo principal es desarrollar un modelo predictivo basado en la exploración de datos para mejorar la toma de decisiones en la clínica de medicina de rehabilitación del Hospital Daniel Alcides Carrión Pasco, 2023. El método utilizado es el diseño de investigación utilizado antes del experimento. Esta población incluye todos los datos de los pacientes atendidos durante el año 2022 en el Hospital Daniel Alcides Carrión Pasco, y se seleccionó aleatoriamente una muestra de 137 pacientes. En este proyecto de minería de datos, el modelo de minería de datos mejoró la toma de decisiones en un 92% y alcanzó un 76- 100%, lo cual es excelente. En resumen, la clasificación de las variables de los pacientes en la Oficina de Medicina de Rehabilitación se determinó utilizando la tecnología de árbol de decisión J48, siendo la variable más influyente el diagnóstico informado por los financiadores para lograr una precisión del 100 %.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).