Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees

Descripción del Articulo

Wood is a heterogenous material whose properties vary over time, making it difficult to predict the wood properties at a given age of trees in the future. The site and climate are also factors affecting wood heterogeneity. To improve the accuracy of early selection of trees in drier sites, it is thu...

Descripción completa

Detalles Bibliográficos
Autores: Chambi Legoas, Roger, Tomazello Filho, Mario, Vidal Cristiane, Chaix Gilles
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional Amazónica de Madre de Dios
Repositorio:UNAMAD-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unamad.edu.pe:20.500.14070/939
Enlace del recurso:http://hdl.handle.net/20.500.14070/939
https://doi.org/10.1007/s00468-023-02397-2
Nivel de acceso:acceso cerrado
Materia:NIRS
Wood densitometry
Water deficit
Wood quality
Juvenile selection
https://purl.org/pe-repo/ocde/ford#4.01.02
id RUNA_b02fa38e284d8ec218684053327948da
oai_identifier_str oai:repositorio.unamad.edu.pe:20.500.14070/939
network_acronym_str RUNA
network_name_str UNAMAD-Institucional
repository_id_str 4808
dc.title.es_PE.fl_str_mv Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
title Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
spellingShingle Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
Chambi Legoas, Roger
NIRS
Wood densitometry
Water deficit
Wood quality
Juvenile selection
https://purl.org/pe-repo/ocde/ford#4.01.02
title_short Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
title_full Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
title_fullStr Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
title_full_unstemmed Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
title_sort Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
author Chambi Legoas, Roger
author_facet Chambi Legoas, Roger
Tomazello Filho, Mario
Vidal Cristiane
Chaix Gilles
author_role author
author2 Tomazello Filho, Mario
Vidal Cristiane
Chaix Gilles
author2_role author
author
author
dc.contributor.author.fl_str_mv Chambi Legoas, Roger
Tomazello Filho, Mario
Vidal Cristiane
Chaix Gilles
dc.subject.es_PE.fl_str_mv NIRS
Wood densitometry
Water deficit
Wood quality
Juvenile selection
topic NIRS
Wood densitometry
Water deficit
Wood quality
Juvenile selection
https://purl.org/pe-repo/ocde/ford#4.01.02
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.02
description Wood is a heterogenous material whose properties vary over time, making it difficult to predict the wood properties at a given age of trees in the future. The site and climate are also factors affecting wood heterogeneity. To improve the accuracy of early selection of trees in drier sites, it is thus important to study inter-annual variations in wood density in conditions of contrasting water availability. We tested the use of near-infrared hyperspectral imaging (NIR-HSI) to assess inter-annual wood density and predict wood density at a future age to evaluate the accuracy of early selection of Eucalyptus grandis trees for wood density and to see if a drier site influences early selection. We sampled 38 six-year-old trees growing under two different water regimes: (i) 37% throughfall reduction (–W), to simulate a dry site, and (ii) undisturbed throughfall (+ W). NIR-HSI images were used to build high-resolution wood density maps of the whole cross section. After the annual growth rings were delimited, the average wood density at each age and in growth ring was extracted to evaluate juvenile–mature correlations in the wood. The NIR-HSI images calibrated with a locally weighted partial least square regression (LWPLSR) model, using raw spectra, performed well in predicting the wood density of the whole cross section. Correlations for wood density between ages 1–3 and 5–6 were strong (r = 0.85 to 0.94), while correlations between rings 1–3 and 4–5 were moderate to strong (r = 0.51 to 0.87). In − W plots, juvenile–mature correlations were slightly lower than in + W plots. Our results suggest that early E. grandis selection for wood density is feasible to predict wood density at 6 years of age.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-02T21:09:40Z
dc.date.available.none.fl_str_mv 2023-03-02T21:09:40Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.citation.es_PE.fl_str_mv Chambi-Legoas, R., Tomazello-Filho, M., Vidal, C. et al. Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees. Trees (2023). https://doi.org/10.1007/s00468-023-02397-2
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14070/939
dc.identifier.doi.es_PE.fl_str_mv https://doi.org/10.1007/s00468-023-02397-2
identifier_str_mv Chambi-Legoas, R., Tomazello-Filho, M., Vidal, C. et al. Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees. Trees (2023). https://doi.org/10.1007/s00468-023-02397-2
url http://hdl.handle.net/20.500.14070/939
https://doi.org/10.1007/s00468-023-02397-2
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv ISSN: 09311890, 14322285
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Verlag
dc.publisher.country.es_PE.fl_str_mv DE
dc.source.es_PE.fl_str_mv Universidad Nacional Amazónica de Madre de Dios - UNAMAD
Repositorio Institucional - UNAMAD
dc.source.none.fl_str_mv reponame:UNAMAD-Institucional
instname:Universidad Nacional Amazónica de Madre de Dios
instacron:UNAMAD
instname_str Universidad Nacional Amazónica de Madre de Dios
instacron_str UNAMAD
institution UNAMAD
reponame_str UNAMAD-Institucional
collection UNAMAD-Institucional
bitstream.url.fl_str_mv http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/1/Logo_Unamad.png
http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/2/license.txt
bitstream.checksum.fl_str_mv 8797433191dfb586f449d67d9296b4a9
c52066b9c50a8f86be96c82978636682
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad
repository.mail.fl_str_mv repositorio@unamad.edu.pe
_version_ 1767524208998350848
spelling Chambi Legoas, RogerTomazello Filho, MarioVidal CristianeChaix Gilles2023-03-02T21:09:40Z2023-03-02T21:09:40Z2023Chambi-Legoas, R., Tomazello-Filho, M., Vidal, C. et al. Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees. Trees (2023). https://doi.org/10.1007/s00468-023-02397-2http://hdl.handle.net/20.500.14070/939https://doi.org/10.1007/s00468-023-02397-2Wood is a heterogenous material whose properties vary over time, making it difficult to predict the wood properties at a given age of trees in the future. The site and climate are also factors affecting wood heterogeneity. To improve the accuracy of early selection of trees in drier sites, it is thus important to study inter-annual variations in wood density in conditions of contrasting water availability. We tested the use of near-infrared hyperspectral imaging (NIR-HSI) to assess inter-annual wood density and predict wood density at a future age to evaluate the accuracy of early selection of Eucalyptus grandis trees for wood density and to see if a drier site influences early selection. We sampled 38 six-year-old trees growing under two different water regimes: (i) 37% throughfall reduction (–W), to simulate a dry site, and (ii) undisturbed throughfall (+ W). NIR-HSI images were used to build high-resolution wood density maps of the whole cross section. After the annual growth rings were delimited, the average wood density at each age and in growth ring was extracted to evaluate juvenile–mature correlations in the wood. The NIR-HSI images calibrated with a locally weighted partial least square regression (LWPLSR) model, using raw spectra, performed well in predicting the wood density of the whole cross section. Correlations for wood density between ages 1–3 and 5–6 were strong (r = 0.85 to 0.94), while correlations between rings 1–3 and 4–5 were moderate to strong (r = 0.51 to 0.87). In − W plots, juvenile–mature correlations were slightly lower than in + W plots. Our results suggest that early E. grandis selection for wood density is feasible to predict wood density at 6 years of age.application/htmlengSpringer VerlagDEISSN: 09311890, 14322285info:eu-repo/semantics/closedAccesshttp://creativecommons.org/licenses/by/4.0/Universidad Nacional Amazónica de Madre de Dios - UNAMADRepositorio Institucional - UNAMADreponame:UNAMAD-Institucionalinstname:Universidad Nacional Amazónica de Madre de Diosinstacron:UNAMADNIRSWood densitometryWater deficitWood qualityJuvenile selectionhttps://purl.org/pe-repo/ocde/ford#4.01.02Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis treesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALLogo_Unamad.pngLogo_Unamad.pngimage/png157456http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/1/Logo_Unamad.png8797433191dfb586f449d67d9296b4a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/2/license.txtc52066b9c50a8f86be96c82978636682MD5220.500.14070/939oai:repositorio.unamad.edu.pe:20.500.14070/9392023-03-02 16:09:51.194Repositorio Institucional de la Universidadrepositorio@unamad.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).