Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees
Descripción del Articulo
Wood is a heterogenous material whose properties vary over time, making it difficult to predict the wood properties at a given age of trees in the future. The site and climate are also factors affecting wood heterogeneity. To improve the accuracy of early selection of trees in drier sites, it is thu...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional Amazónica de Madre de Dios |
| Repositorio: | UNAMAD-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.unamad.edu.pe:20.500.14070/939 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14070/939 https://doi.org/10.1007/s00468-023-02397-2 |
| Nivel de acceso: | acceso cerrado |
| Materia: | NIRS Wood densitometry Water deficit Wood quality Juvenile selection https://purl.org/pe-repo/ocde/ford#4.01.02 |
| id |
RUNA_b02fa38e284d8ec218684053327948da |
|---|---|
| oai_identifier_str |
oai:repositorio.unamad.edu.pe:20.500.14070/939 |
| network_acronym_str |
RUNA |
| network_name_str |
UNAMAD-Institucional |
| repository_id_str |
4808 |
| dc.title.es_PE.fl_str_mv |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| title |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| spellingShingle |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees Chambi Legoas, Roger NIRS Wood densitometry Water deficit Wood quality Juvenile selection https://purl.org/pe-repo/ocde/ford#4.01.02 |
| title_short |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| title_full |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| title_fullStr |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| title_full_unstemmed |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| title_sort |
Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees |
| author |
Chambi Legoas, Roger |
| author_facet |
Chambi Legoas, Roger Tomazello Filho, Mario Vidal Cristiane Chaix Gilles |
| author_role |
author |
| author2 |
Tomazello Filho, Mario Vidal Cristiane Chaix Gilles |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Chambi Legoas, Roger Tomazello Filho, Mario Vidal Cristiane Chaix Gilles |
| dc.subject.es_PE.fl_str_mv |
NIRS Wood densitometry Water deficit Wood quality Juvenile selection |
| topic |
NIRS Wood densitometry Water deficit Wood quality Juvenile selection https://purl.org/pe-repo/ocde/ford#4.01.02 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.02 |
| description |
Wood is a heterogenous material whose properties vary over time, making it difficult to predict the wood properties at a given age of trees in the future. The site and climate are also factors affecting wood heterogeneity. To improve the accuracy of early selection of trees in drier sites, it is thus important to study inter-annual variations in wood density in conditions of contrasting water availability. We tested the use of near-infrared hyperspectral imaging (NIR-HSI) to assess inter-annual wood density and predict wood density at a future age to evaluate the accuracy of early selection of Eucalyptus grandis trees for wood density and to see if a drier site influences early selection. We sampled 38 six-year-old trees growing under two different water regimes: (i) 37% throughfall reduction (–W), to simulate a dry site, and (ii) undisturbed throughfall (+ W). NIR-HSI images were used to build high-resolution wood density maps of the whole cross section. After the annual growth rings were delimited, the average wood density at each age and in growth ring was extracted to evaluate juvenile–mature correlations in the wood. The NIR-HSI images calibrated with a locally weighted partial least square regression (LWPLSR) model, using raw spectra, performed well in predicting the wood density of the whole cross section. Correlations for wood density between ages 1–3 and 5–6 were strong (r = 0.85 to 0.94), while correlations between rings 1–3 and 4–5 were moderate to strong (r = 0.51 to 0.87). In − W plots, juvenile–mature correlations were slightly lower than in + W plots. Our results suggest that early E. grandis selection for wood density is feasible to predict wood density at 6 years of age. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-03-02T21:09:40Z |
| dc.date.available.none.fl_str_mv |
2023-03-02T21:09:40Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.es_PE.fl_str_mv |
Chambi-Legoas, R., Tomazello-Filho, M., Vidal, C. et al. Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees. Trees (2023). https://doi.org/10.1007/s00468-023-02397-2 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14070/939 |
| dc.identifier.doi.es_PE.fl_str_mv |
https://doi.org/10.1007/s00468-023-02397-2 |
| identifier_str_mv |
Chambi-Legoas, R., Tomazello-Filho, M., Vidal, C. et al. Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees. Trees (2023). https://doi.org/10.1007/s00468-023-02397-2 |
| url |
http://hdl.handle.net/20.500.14070/939 https://doi.org/10.1007/s00468-023-02397-2 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.es_PE.fl_str_mv |
ISSN: 09311890, 14322285 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/closedAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
closedAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Verlag |
| dc.publisher.country.es_PE.fl_str_mv |
DE |
| dc.source.es_PE.fl_str_mv |
Universidad Nacional Amazónica de Madre de Dios - UNAMAD Repositorio Institucional - UNAMAD |
| dc.source.none.fl_str_mv |
reponame:UNAMAD-Institucional instname:Universidad Nacional Amazónica de Madre de Dios instacron:UNAMAD |
| instname_str |
Universidad Nacional Amazónica de Madre de Dios |
| instacron_str |
UNAMAD |
| institution |
UNAMAD |
| reponame_str |
UNAMAD-Institucional |
| collection |
UNAMAD-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/1/Logo_Unamad.png http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/2/license.txt |
| bitstream.checksum.fl_str_mv |
8797433191dfb586f449d67d9296b4a9 c52066b9c50a8f86be96c82978636682 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad |
| repository.mail.fl_str_mv |
repositorio@unamad.edu.pe |
| _version_ |
1767524208998350848 |
| spelling |
Chambi Legoas, RogerTomazello Filho, MarioVidal CristianeChaix Gilles2023-03-02T21:09:40Z2023-03-02T21:09:40Z2023Chambi-Legoas, R., Tomazello-Filho, M., Vidal, C. et al. Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis trees. Trees (2023). https://doi.org/10.1007/s00468-023-02397-2http://hdl.handle.net/20.500.14070/939https://doi.org/10.1007/s00468-023-02397-2Wood is a heterogenous material whose properties vary over time, making it difficult to predict the wood properties at a given age of trees in the future. The site and climate are also factors affecting wood heterogeneity. To improve the accuracy of early selection of trees in drier sites, it is thus important to study inter-annual variations in wood density in conditions of contrasting water availability. We tested the use of near-infrared hyperspectral imaging (NIR-HSI) to assess inter-annual wood density and predict wood density at a future age to evaluate the accuracy of early selection of Eucalyptus grandis trees for wood density and to see if a drier site influences early selection. We sampled 38 six-year-old trees growing under two different water regimes: (i) 37% throughfall reduction (–W), to simulate a dry site, and (ii) undisturbed throughfall (+ W). NIR-HSI images were used to build high-resolution wood density maps of the whole cross section. After the annual growth rings were delimited, the average wood density at each age and in growth ring was extracted to evaluate juvenile–mature correlations in the wood. The NIR-HSI images calibrated with a locally weighted partial least square regression (LWPLSR) model, using raw spectra, performed well in predicting the wood density of the whole cross section. Correlations for wood density between ages 1–3 and 5–6 were strong (r = 0.85 to 0.94), while correlations between rings 1–3 and 4–5 were moderate to strong (r = 0.51 to 0.87). In − W plots, juvenile–mature correlations were slightly lower than in + W plots. Our results suggest that early E. grandis selection for wood density is feasible to predict wood density at 6 years of age.application/htmlengSpringer VerlagDEISSN: 09311890, 14322285info:eu-repo/semantics/closedAccesshttp://creativecommons.org/licenses/by/4.0/Universidad Nacional Amazónica de Madre de Dios - UNAMADRepositorio Institucional - UNAMADreponame:UNAMAD-Institucionalinstname:Universidad Nacional Amazónica de Madre de Diosinstacron:UNAMADNIRSWood densitometryWater deficitWood qualityJuvenile selectionhttps://purl.org/pe-repo/ocde/ford#4.01.02Wood density prediction using near-infrared hyperspectral imaging for early selection of Eucalyptus grandis treesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALLogo_Unamad.pngLogo_Unamad.pngimage/png157456http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/1/Logo_Unamad.png8797433191dfb586f449d67d9296b4a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327http://repositorio.unamad.edu.pe/bitstream/20.500.14070/939/2/license.txtc52066b9c50a8f86be96c82978636682MD5220.500.14070/939oai:repositorio.unamad.edu.pe:20.500.14070/9392023-03-02 16:09:51.194Repositorio Institucional de la Universidadrepositorio@unamad.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg== |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).