Evaluation of prediction models of chemical composition and gross energy of kikuyo (Pennisetum clandestinum) using near infrared spectroscopy (NIRS)
Descripción del Articulo
El objetivo de este estudio fue evaluar modelos de predicción de la composición química del pasto kikuyo (Pennisetum clandestinum) usando espectroscopía en el infrarrojo cercano (NIRS). Se recolectaron muestras de P. clandestinum del distrito de Florida-Pomacochas, Amazonas, Perú, en tres edades de...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
Lenguaje: | español |
OAI Identifier: | oai:ojs.csi.unmsm:article/16598 |
Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/16598 |
Nivel de acceso: | acceso abierto |
Materia: | análisis químico; NIRS; PLSR; ANN; validación; Pennisetum clandestinum |
Sumario: | El objetivo de este estudio fue evaluar modelos de predicción de la composición química del pasto kikuyo (Pennisetum clandestinum) usando espectroscopía en el infrarrojo cercano (NIRS). Se recolectaron muestras de P. clandestinum del distrito de Florida-Pomacochas, Amazonas, Perú, en tres edades de la planta (45, 60 y 75 días después del corte) y dos épocas del año (lluviosa y seca). Se determinó el contenido de humedad (H), proteína cruda (PC), extracto etéreo (EE), fibra cruda (FC), cenizas y energía bruta (EB). Se obtuvieron los espectros de absorbancia en el rango de longitud de onda de 1100-2500 nm. Mediante funciones y scripts de Matlab 2015ª se implementaron modelos de predicción, completos y optimizados, mediante redes neuronales (ANN) y regresión por mínimos cuadrados parciales (PLSR). Los modelos optimizados usaron 18 longitudes de onda relevantes, determinadas para ambos tipos de modelos de acuerdo a la matriz de beta coeficientes del modelo PLSR. Los modelos PLSR vs ANN, en la etapa de validación, mostraron mejores ajustes (R2>0.70) en H, PC, EE, cenizas y EB con un R2 de 0.74, 0,89, 0.79, 0.74 y 0.87, respectivamente. Por tanto, el modelo NIRS-PLSR tiene potencial en la predicción de la composición del pasto kikuyo (P. clandestinum). |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).