Comparison of the machine learning and aquacrop models for quinoa crops

Descripción del Articulo

One of the main causes of low crop efficiency in Peru is poor management of water resources; that is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and Aquacrop models. For the developmen...

Descripción completa

Detalles Bibliográficos
Autores: Chumbe Llimpe, Rossy Jackeline, Silva Paucar, Stefany Dennis
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/22481
Enlace del recurso:https://hdl.handle.net/20.500.12724/22481
Nivel de acceso:acceso abierto
Materia:Quinua
Riego
Agua
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_fefb42be2f2da8c73a30892e8a231502
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/22481
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Comparison of the machine learning and aquacrop models for quinoa crops
title Comparison of the machine learning and aquacrop models for quinoa crops
spellingShingle Comparison of the machine learning and aquacrop models for quinoa crops
Chumbe Llimpe, Rossy Jackeline
Quinua
Riego
Agua
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Comparison of the machine learning and aquacrop models for quinoa crops
title_full Comparison of the machine learning and aquacrop models for quinoa crops
title_fullStr Comparison of the machine learning and aquacrop models for quinoa crops
title_full_unstemmed Comparison of the machine learning and aquacrop models for quinoa crops
title_sort Comparison of the machine learning and aquacrop models for quinoa crops
author Chumbe Llimpe, Rossy Jackeline
author_facet Chumbe Llimpe, Rossy Jackeline
Silva Paucar, Stefany Dennis
author_role author
author2 Silva Paucar, Stefany Dennis
author2_role author
dc.contributor.advisor.fl_str_mv Quiroz Flores, Juan Carlos
dc.contributor.author.fl_str_mv Chumbe Llimpe, Rossy Jackeline
Silva Paucar, Stefany Dennis
dc.subject.es_PE.fl_str_mv Quinua
Riego
Agua
Aprendizaje automático
topic Quinua
Riego
Agua
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description One of the main causes of low crop efficiency in Peru is poor management of water resources; that is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and Aquacrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Ada Boost model in which it was observed that the mean and standard deviation of the Ada Boost models (Mean = 19.681 and Std. Dev. = 4.665) behave similarly to AquaCrop (Mean = 19.838 and Std. Dev. = 5.04). In addition, the result of the analysis of variance (ANOVA) was that the AdaBoost model has the best p-value indicator with a value of 0.962 and a smaller margin of error in relation to the MAE indicator with a value of 0.629. Likewise, it was identified that for the simulation period of 190 days, 472.35mm of water was required to carry out the irrigation process in red quinoa crops.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-04-09T22:03:35Z
dc.date.available.none.fl_str_mv 2025-04-09T22:03:35Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/22481
dc.identifier.isni.none.fl_str_mv 0000000121541816
url https://hdl.handle.net/20.500.12724/22481
identifier_str_mv 0000000121541816
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/1/T018_71489620_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/2/FA_71489620_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/3/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/4/T018_71489620_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/6/FA_71489620_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/8/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/5/T018_71489620_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/7/FA_71489620_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/9/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.jpg
bitstream.checksum.fl_str_mv ac2de6321210ef0a162377690a62f1fb
a2249532c1fd20d0c45a20bf56afa433
326ae1ee4642315efcf7ed15ba410c53
f1e6c466a75abcebde3ee614ce9c8595
845008d1e248af118365275efd3e91f0
9d9e8eac949e5c354e8e2e188795d644
f7b53ab0d403cd314eec45fdbf43d606
a208c6854fd549d3b2c2cc14b270be43
c047e34e9a5f88382ae9d793e292a8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1840271247349383168
spelling Quiroz Flores, Juan CarlosChumbe Llimpe, Rossy JackelineSilva Paucar, Stefany Dennis2025-04-09T22:03:35Z2025-04-09T22:03:35Z2024https://hdl.handle.net/20.500.12724/224810000000121541816One of the main causes of low crop efficiency in Peru is poor management of water resources; that is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and Aquacrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Ada Boost model in which it was observed that the mean and standard deviation of the Ada Boost models (Mean = 19.681 and Std. Dev. = 4.665) behave similarly to AquaCrop (Mean = 19.838 and Std. Dev. = 5.04). In addition, the result of the analysis of variance (ANOVA) was that the AdaBoost model has the best p-value indicator with a value of 0.962 and a smaller margin of error in relation to the MAE indicator with a value of 0.629. Likewise, it was identified that for the simulation period of 190 days, 472.35mm of water was required to carry out the irrigation process in red quinoa crops.Una de las principales causas de la baja eficiencia de los cultivos en el Perú es la mala gestión de los recursos hídricos; por lo que el presente artículo tiene como objetivo principal estimar la cantidad de agua de riego requerida en cultivos de quinua mediante una comparación entre los modelos de Machine Learning y AquaCrop. Para el desarrollo de este estudio se procesaron datos meteorológicos de la provincia de Jauja y descriptivos del cultivo de quinua y se estableció un periodo de simulación de junio a diciembre del 2020. De la simulación realizada se determinó que el mejor modelo para predecir el agua de riego requerida es el modelo AdaBoost en el cual se observó que la media y desviación estándar de los modelos AdaBoost (Mean = 19.681 y Std. Dev. = 4.665) se comportan de manera similar a AquaCrop (Media = 19.838 y Std. Dev. = 5.04). Además, el resultado del análisis de varianza (ANOVA) fue que el modelo AdaBoost tiene el mejor indicador de valor p con un valor de 0.962 y un margen de error menor en relación al indicador MAE con un valor de 0.629. Asimismo, se identificó que para el periodo de simulación de 190 días se requirieron 472.35mm de agua para realizar el proceso de riego en cultivos de quinua roja.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAQuinuaRiegoAguaAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Comparison of the machine learning and aquacrop models for quinoa cropsinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103002857220267148962072638685https://purl.org/pe-repo/renati/level#tituloProfesionalTaquia Gutiérrez, José AntonioMálaga Ortiz, María TeresaQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_71489620_T.pdfT018_71489620_T.pdfTesisapplication/pdf236232https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/1/T018_71489620_T.pdfac2de6321210ef0a162377690a62f1fbMD51FA_71489620_SR.pdfFA_71489620_SR.pdfAutorizaciónapplication/pdf259642https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/2/FA_71489620_SR.pdfa2249532c1fd20d0c45a20bf56afa433MD52TURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdfTURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdfReporte de similitudapplication/pdf2163173https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/3/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf326ae1ee4642315efcf7ed15ba410c53MD53TEXTT018_71489620_T.pdf.txtT018_71489620_T.pdf.txtExtracted texttext/plain12450https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/4/T018_71489620_T.pdf.txtf1e6c466a75abcebde3ee614ce9c8595MD54FA_71489620_SR.pdf.txtFA_71489620_SR.pdf.txtExtracted texttext/plain4297https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/6/FA_71489620_SR.pdf.txt845008d1e248af118365275efd3e91f0MD56TURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.txtTURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.txtExtracted texttext/plain15761https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/8/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.txt9d9e8eac949e5c354e8e2e188795d644MD58THUMBNAILT018_71489620_T.pdf.jpgT018_71489620_T.pdf.jpgGenerated Thumbnailimage/jpeg10231https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/5/T018_71489620_T.pdf.jpgf7b53ab0d403cd314eec45fdbf43d606MD55FA_71489620_SR.pdf.jpgFA_71489620_SR.pdf.jpgGenerated Thumbnailimage/jpeg20821https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/7/FA_71489620_SR.pdf.jpga208c6854fd549d3b2c2cc14b270be43MD57TURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.jpgTURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.jpgGenerated Thumbnailimage/jpeg7815https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/9/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.jpgc047e34e9a5f88382ae9d793e292a8d6MD5920.500.12724/22481oai:repositorio.ulima.edu.pe:20.500.12724/224812025-07-14 18:25:41.841Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.10263
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).