Comparison of the machine learning and aquacrop models for quinoa crops
Descripción del Articulo
One of the main causes of low crop efficiency in Peru is poor management of water resources; that is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and Aquacrop models. For the developmen...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/22481 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/22481 |
Nivel de acceso: | acceso abierto |
Materia: | Quinua Riego Agua Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_fefb42be2f2da8c73a30892e8a231502 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/22481 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Comparison of the machine learning and aquacrop models for quinoa crops |
title |
Comparison of the machine learning and aquacrop models for quinoa crops |
spellingShingle |
Comparison of the machine learning and aquacrop models for quinoa crops Chumbe Llimpe, Rossy Jackeline Quinua Riego Agua Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Comparison of the machine learning and aquacrop models for quinoa crops |
title_full |
Comparison of the machine learning and aquacrop models for quinoa crops |
title_fullStr |
Comparison of the machine learning and aquacrop models for quinoa crops |
title_full_unstemmed |
Comparison of the machine learning and aquacrop models for quinoa crops |
title_sort |
Comparison of the machine learning and aquacrop models for quinoa crops |
author |
Chumbe Llimpe, Rossy Jackeline |
author_facet |
Chumbe Llimpe, Rossy Jackeline Silva Paucar, Stefany Dennis |
author_role |
author |
author2 |
Silva Paucar, Stefany Dennis |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
Quiroz Flores, Juan Carlos |
dc.contributor.author.fl_str_mv |
Chumbe Llimpe, Rossy Jackeline Silva Paucar, Stefany Dennis |
dc.subject.es_PE.fl_str_mv |
Quinua Riego Agua Aprendizaje automático |
topic |
Quinua Riego Agua Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
One of the main causes of low crop efficiency in Peru is poor management of water resources; that is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and Aquacrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Ada Boost model in which it was observed that the mean and standard deviation of the Ada Boost models (Mean = 19.681 and Std. Dev. = 4.665) behave similarly to AquaCrop (Mean = 19.838 and Std. Dev. = 5.04). In addition, the result of the analysis of variance (ANOVA) was that the AdaBoost model has the best p-value indicator with a value of 0.962 and a smaller margin of error in relation to the MAE indicator with a value of 0.629. Likewise, it was identified that for the simulation period of 190 days, 472.35mm of water was required to carry out the irrigation process in red quinoa crops. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-04-09T22:03:35Z |
dc.date.available.none.fl_str_mv |
2025-04-09T22:03:35Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.other.none.fl_str_mv |
Tesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/22481 |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
url |
https://hdl.handle.net/20.500.12724/22481 |
identifier_str_mv |
0000000121541816 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/1/T018_71489620_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/2/FA_71489620_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/3/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/4/T018_71489620_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/6/FA_71489620_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/8/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/5/T018_71489620_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/7/FA_71489620_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/9/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.jpg |
bitstream.checksum.fl_str_mv |
ac2de6321210ef0a162377690a62f1fb a2249532c1fd20d0c45a20bf56afa433 326ae1ee4642315efcf7ed15ba410c53 f1e6c466a75abcebde3ee614ce9c8595 845008d1e248af118365275efd3e91f0 9d9e8eac949e5c354e8e2e188795d644 f7b53ab0d403cd314eec45fdbf43d606 a208c6854fd549d3b2c2cc14b270be43 c047e34e9a5f88382ae9d793e292a8d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1840271247349383168 |
spelling |
Quiroz Flores, Juan CarlosChumbe Llimpe, Rossy JackelineSilva Paucar, Stefany Dennis2025-04-09T22:03:35Z2025-04-09T22:03:35Z2024https://hdl.handle.net/20.500.12724/224810000000121541816One of the main causes of low crop efficiency in Peru is poor management of water resources; that is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and Aquacrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Ada Boost model in which it was observed that the mean and standard deviation of the Ada Boost models (Mean = 19.681 and Std. Dev. = 4.665) behave similarly to AquaCrop (Mean = 19.838 and Std. Dev. = 5.04). In addition, the result of the analysis of variance (ANOVA) was that the AdaBoost model has the best p-value indicator with a value of 0.962 and a smaller margin of error in relation to the MAE indicator with a value of 0.629. Likewise, it was identified that for the simulation period of 190 days, 472.35mm of water was required to carry out the irrigation process in red quinoa crops.Una de las principales causas de la baja eficiencia de los cultivos en el Perú es la mala gestión de los recursos hídricos; por lo que el presente artículo tiene como objetivo principal estimar la cantidad de agua de riego requerida en cultivos de quinua mediante una comparación entre los modelos de Machine Learning y AquaCrop. Para el desarrollo de este estudio se procesaron datos meteorológicos de la provincia de Jauja y descriptivos del cultivo de quinua y se estableció un periodo de simulación de junio a diciembre del 2020. De la simulación realizada se determinó que el mejor modelo para predecir el agua de riego requerida es el modelo AdaBoost en el cual se observó que la media y desviación estándar de los modelos AdaBoost (Mean = 19.681 y Std. Dev. = 4.665) se comportan de manera similar a AquaCrop (Media = 19.838 y Std. Dev. = 5.04). Además, el resultado del análisis de varianza (ANOVA) fue que el modelo AdaBoost tiene el mejor indicador de valor p con un valor de 0.962 y un margen de error menor en relación al indicador MAE con un valor de 0.629. Asimismo, se identificó que para el periodo de simulación de 190 días se requirieron 472.35mm de agua para realizar el proceso de riego en cultivos de quinua roja.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAQuinuaRiegoAguaAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Comparison of the machine learning and aquacrop models for quinoa cropsinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103002857220267148962072638685https://purl.org/pe-repo/renati/level#tituloProfesionalTaquia Gutiérrez, José AntonioMálaga Ortiz, María TeresaQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_71489620_T.pdfT018_71489620_T.pdfTesisapplication/pdf236232https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/1/T018_71489620_T.pdfac2de6321210ef0a162377690a62f1fbMD51FA_71489620_SR.pdfFA_71489620_SR.pdfAutorizaciónapplication/pdf259642https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/2/FA_71489620_SR.pdfa2249532c1fd20d0c45a20bf56afa433MD52TURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdfTURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdfReporte de similitudapplication/pdf2163173https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/3/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf326ae1ee4642315efcf7ed15ba410c53MD53TEXTT018_71489620_T.pdf.txtT018_71489620_T.pdf.txtExtracted texttext/plain12450https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/4/T018_71489620_T.pdf.txtf1e6c466a75abcebde3ee614ce9c8595MD54FA_71489620_SR.pdf.txtFA_71489620_SR.pdf.txtExtracted texttext/plain4297https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/6/FA_71489620_SR.pdf.txt845008d1e248af118365275efd3e91f0MD56TURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.txtTURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.txtExtracted texttext/plain15761https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/8/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.txt9d9e8eac949e5c354e8e2e188795d644MD58THUMBNAILT018_71489620_T.pdf.jpgT018_71489620_T.pdf.jpgGenerated Thumbnailimage/jpeg10231https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/5/T018_71489620_T.pdf.jpgf7b53ab0d403cd314eec45fdbf43d606MD55FA_71489620_SR.pdf.jpgFA_71489620_SR.pdf.jpgGenerated Thumbnailimage/jpeg20821https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/7/FA_71489620_SR.pdf.jpga208c6854fd549d3b2c2cc14b270be43MD57TURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.jpgTURNITIN_CHUMBE LLIMPE ROSSY JACKELINE_20170388 .pdf.jpgGenerated Thumbnailimage/jpeg7815https://repositorio.ulima.edu.pe/bitstream/20.500.12724/22481/9/TURNITIN_CHUMBE%20LLIMPE%20%20ROSSY%20JACKELINE_20170388%20.pdf.jpgc047e34e9a5f88382ae9d793e292a8d6MD5920.500.12724/22481oai:repositorio.ulima.edu.pe:20.500.12724/224812025-07-14 18:25:41.841Repositorio Universidad de Limarepositorio@ulima.edu.pe |
score |
13.10263 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).