Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector
Descripción del Articulo
The research work is based on the analysis of demand in a tourism company using mathematical models. The methodology design presents a correlational and descriptive scope where the company's sales are collected to calculate the mean absolute percentage error in demand. With the help of machine...
Autores: | , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2024 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/21853 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/21853 https://doi.org/10.11159/icmie24.110 |
Nivel de acceso: | acceso abierto |
Materia: | Pendiente |
id |
RULI_f4396f9f04a4ce3cce7903718a834a93 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/21853 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
spelling |
Ludeña Roman, Sayuri Arleth RenattaZelada Collazos, SebastianCorzo Chávez, Jorge AntonioCorzo Chávez, Jorge AntonioLudeña Roman, Sayuri Arleth Renatta (Ingeniería Industrial)Zelada Collazos, Sebastián (Ingeniería Industrial)2025-01-14T16:02:43Z2025-01-14T16:02:43Z2024Ludeña-Roman, S. A. R., Zelada-Collazos, S., & Corzo-Chavez, J. A. (2024). Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. https://doi.org/10.11159/icmie24.1102369-8136https://hdl.handle.net/20.500.12724/21853121541816Proceedings of the World Congress on Mechanical, Chemical, and Material Engineeringhttps://doi.org/10.11159/icmie24.1102-s2.0-85205133591The research work is based on the analysis of demand in a tourism company using mathematical models. The methodology design presents a correlational and descriptive scope where the company's sales are collected to calculate the mean absolute percentage error in demand. With the help of machine learning tools, a predictive analysis will be carried out to estimate the sales for the following year, seeking to reduce the error using one of the selected mathematical models, calculate the necessary sales force, and thereby reduce the economic impact equivalent to $16 789,02. The MAPE (Mean Absolute Percentage Error) in the tourism sector is 12,03%. Through calculations using Python and RISK, a value of 15, 36% was obtained, reducing the MAPE by 4,24% compared to the year 2022. The Systematic Review of the Literature allows us to showcase the tools that can be developed in similar or atypical scenarios. The choice will depend on the behaviour pattern or trend. © 2024, Avestia Publishing. All rights reserved.application/htmlengAvestia PublishingCAinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientePendienteDemand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sectorinfo:eu-repo/semantics/conferenceObjectArtícuo de conferencia en ScopusCorzo Chávez, Jorge Antonio (Ingeniería Industrial)Corzo Chávez, Jorge Antonio (Facultad de Ingeniería, Universidad de Lima)PendientePendiente20.500.12724/21853oai:repositorio.ulima.edu.pe:20.500.12724/218532025-03-05 12:42:45.43Repositorio Universidad de Limarepositorio@ulima.edu.pe |
dc.title.none.fl_str_mv |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
title |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
spellingShingle |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector Ludeña Roman, Sayuri Arleth Renatta Pendiente Pendiente |
title_short |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
title_full |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
title_fullStr |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
title_full_unstemmed |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
title_sort |
Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector |
author |
Ludeña Roman, Sayuri Arleth Renatta |
author_facet |
Ludeña Roman, Sayuri Arleth Renatta Zelada Collazos, Sebastian Corzo Chávez, Jorge Antonio |
author_role |
author |
author2 |
Zelada Collazos, Sebastian Corzo Chávez, Jorge Antonio |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
Corzo Chávez, Jorge Antonio |
dc.contributor.student.none.fl_str_mv |
Ludeña Roman, Sayuri Arleth Renatta (Ingeniería Industrial) Zelada Collazos, Sebastián (Ingeniería Industrial) |
dc.contributor.author.fl_str_mv |
Ludeña Roman, Sayuri Arleth Renatta Zelada Collazos, Sebastian Corzo Chávez, Jorge Antonio |
dc.subject.none.fl_str_mv |
Pendiente |
topic |
Pendiente Pendiente |
dc.subject.ocde.none.fl_str_mv |
Pendiente |
description |
The research work is based on the analysis of demand in a tourism company using mathematical models. The methodology design presents a correlational and descriptive scope where the company's sales are collected to calculate the mean absolute percentage error in demand. With the help of machine learning tools, a predictive analysis will be carried out to estimate the sales for the following year, seeking to reduce the error using one of the selected mathematical models, calculate the necessary sales force, and thereby reduce the economic impact equivalent to $16 789,02. The MAPE (Mean Absolute Percentage Error) in the tourism sector is 12,03%. Through calculations using Python and RISK, a value of 15, 36% was obtained, reducing the MAPE by 4,24% compared to the year 2022. The Systematic Review of the Literature allows us to showcase the tools that can be developed in similar or atypical scenarios. The choice will depend on the behaviour pattern or trend. © 2024, Avestia Publishing. All rights reserved. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-01-14T16:02:43Z |
dc.date.available.none.fl_str_mv |
2025-01-14T16:02:43Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.other.none.fl_str_mv |
Artícuo de conferencia en Scopus |
format |
conferenceObject |
dc.identifier.citation.none.fl_str_mv |
Ludeña-Roman, S. A. R., Zelada-Collazos, S., & Corzo-Chavez, J. A. (2024). Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. https://doi.org/10.11159/icmie24.110 |
dc.identifier.issn.none.fl_str_mv |
2369-8136 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/21853 |
dc.identifier.isni.none.fl_str_mv |
121541816 |
dc.identifier.event.none.fl_str_mv |
Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11159/icmie24.110 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85205133591 |
identifier_str_mv |
Ludeña-Roman, S. A. R., Zelada-Collazos, S., & Corzo-Chavez, J. A. (2024). Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. https://doi.org/10.11159/icmie24.110 2369-8136 121541816 Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering 2-s2.0-85205133591 |
url |
https://hdl.handle.net/20.500.12724/21853 https://doi.org/10.11159/icmie24.110 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Avestia Publishing |
dc.publisher.country.none.fl_str_mv |
CA |
publisher.none.fl_str_mv |
Avestia Publishing |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1840270840926568448 |
score |
13.11166 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).